A deep learning-based approach for fault diagnosis of current-carrying ring in catenary system

被引:0
|
作者
Yuwen Chen
Bin Song
Yuan Zeng
Xiaojiang Du
Mohsen Guizani
机构
[1] Xidian University,State Key Laboratory of Integrated Services Networks
[2] Temple University,Department of Computer and Information Sciences
[3] Qatar University,Department of Computer Science and Engineering
来源
关键词
Railway; Catenary system; Deep learning; Fault diagnosis;
D O I
暂无
中图分类号
学科分类号
摘要
In the Industrial Internet of Things, the deep learning-based methods are used to help solve various problems. The current-carrying ring as one of important components on the catenary system which is always small in the catenary image has the potential risk to be a defect to impact the train operation. To improve the detection performance for the faulted current-carrying ring, a fault diagnosis method for the current-carrying ring based on an improved CenterNet model is proposed. Through analyzing of the characteristics of the catenary images and the detection network, the catenary image is preprocessed firstly by a simple enhancement method, which is proposed based on the Retinex theory for improving the quality of the image and suppressing noise in some degree. The embedded attention modules denoted as spatial weight block and channel weight block are adopted to enhance the local and global features, respectively. The shallow characteristics are fused into the deep semantic features with adaptive learning weights to make the features abundant. The weighted loss is presented to improve the performance of the detection for the faulted current-carrying ring. The experimental results show that the proposed method has improved fault diagnosis accuracy for the current-carrying rings which presents higher precision and recall values compared with the other detection networks in the experiments. It could provide useful assistance for improving efficiency and stability of the railway transportation.
引用
收藏
页码:23725 / 23737
页数:12
相关论文
共 50 条
  • [21] A Study on Deep Learning-Based Fault Diagnosis and Classification for Marine Engine System Auxiliary Equipment
    Kim, Jeong-yeong
    Lee, Tae-hyun
    Lee, Song-ho
    Lee, Jong-jik
    Lee, Won-kyun
    Kim, Yong-jin
    Park, Jong-won
    PROCESSES, 2022, 10 (07)
  • [22] A Deep Learning-Based Fault Diagnosis of Leader-Following Systems
    Liu, Xiaoxu
    Lu, Xin
    Gao, Zhiwei
    IEEE ACCESS, 2022, 10 : 18695 - 18706
  • [23] Ensemble deep learning-based fault diagnosis of rotor bearing systems
    Ma, Sai
    Chu, Fulei
    COMPUTERS IN INDUSTRY, 2019, 105 : 143 - 152
  • [24] Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks
    Liu, J. Z.
    Qu, Q. L.
    Yang, H. Y.
    Zhang, J. M.
    Liu, Z. D.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (04)
  • [25] Deep learning-based fault diagnosis of planetary gearbox: A systematic review
    Ahmad, Hassaan
    Cheng, Wei
    Xing, Ji
    Wang, Wentao
    Du, Shuhong
    Li, Linying
    Zhang, Rongyong
    Chen, Xuefeng
    Lu, Jinqi
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 77 : 730 - 745
  • [26] Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
    Pham, Minh Tuan
    Kim, Jong-Myon
    Kim, Cheol Hong
    SENSORS, 2020, 20 (23) : 1 - 15
  • [27] Deep residual learning-based fault diagnosis method for rotating machinery
    Zhang, Wei
    Li, Xiang
    Ding, Qian
    ISA TRANSACTIONS, 2019, 95 : 295 - 305
  • [28] Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach
    Jiang, Guoqian
    Zhao, Jingyi
    Jia, Chenling
    He, Qun
    Xie, Ping
    Meng, Zong
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [29] A Deep Learning-Based Approach for the Diagnosis of Acute Lymphoblastic Leukemia
    Saeed, Adnan
    Shoukat, Shifa
    Shehzad, Khurram
    Ahmad, Ijaz
    Eshmawi, Ala' Abdulmajid
    Amin, Ali H.
    Tag-Eldin, Elsayed
    ELECTRONICS, 2022, 11 (19)
  • [30] A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning
    Li, Yang
    Gu, Xiaojiao
    Wei, Yonghe
    SENSORS, 2024, 24 (23)