Customer churn prediction system: a machine learning approach

被引:0
|
作者
Praveen Lalwani
Manas Kumar Mishra
Jasroop Singh Chadha
Pratyush Sethi
机构
[1] VIT Bhopal University,
来源
Computing | 2022年 / 104卷
关键词
Customer Churn Prediction; Machine Learning; Predictive Modeling; Confusion Matrix; AUC Curve; 68T01; 68T05;
D O I
暂无
中图分类号
学科分类号
摘要
The customer churn prediction (CCP) is one of the challenging problems in the telecom industry. With the advancement in the field of machine learning and artificial intelligence, the possibilities to predict customer churn has increased significantly. Our proposed methodology, consists of six phases. In the first two phases, data pre-processing and feature analysis is performed. In the third phase, feature selection is taken into consideration using gravitational search algorithm. Next, the data has been split into two parts train and test set in the ratio of 80% and 20% respectively. In the prediction process, most popular predictive models have been applied, namely, logistic regression, naive bayes, support vector machine, random forest, decision trees, etc. on train set as well as boosting and ensemble techniques are applied to see the effect on accuracy of models. In addition, K-fold cross validation has been used over train set for hyperparameter tuning and to prevent overfitting of models. Finally, the obtained results on test set have been evaluated using confusion matrix and AUC curve. It was found that Adaboost and XGboost Classifier gives the highest accuracy of 81.71% and 80.8% respectively. The highest AUC score of 84%, is achieved by both Adaboost and XGBoost Classifiers which outperforms over others.
引用
收藏
页码:271 / 294
页数:23
相关论文
共 50 条
  • [31] Machine Learning and Neural Network Models for Customer Churn Prediction in Banking and Telecom Sectors
    Patil, Ketaki
    Patil, Shivraj
    Danve, Riya
    Patil, Ruchira
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 241 - 253
  • [32] PREDICTING CUSTOMER CHURN PREDICTION IN TELECOM SECTOR USING VARIOUS MACHINE LEARNING TECHNIQUES
    Gaur, Abhishek
    Dubey, Ratnesh
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATION AND TELECOMMUNICATION (ICACAT), 2018,
  • [33] Regression-Based Machine Learning Framework for Customer Churn Prediction in Telecommunication Industry
    Ele, Sylvester Igbo
    Alo, Uzoma Rita
    Nweke, Henry Friday
    Ofem, Ajah Ofem
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (05) : 1046 - 1055
  • [34] Explaining customer churn prediction in telecom industry using tabular machine learning models
    Poudel, Sumana Sharma
    Pokharel, Suresh
    Timilsina, Mohan
    MACHINE LEARNING WITH APPLICATIONS, 2024, 17
  • [35] An Efficient Customer Churn Prediction Technique Using Combined Machine Learning in Commercial Banks
    Van-Hieu Vu
    Operations Research Forum, 5 (3)
  • [36] A Hybrid System for Customer Churn Prediction and Retention Analysis via Supervised Learning
    Arshad, Soban
    Iqbal, Khalid
    Naz, Sheneela
    Yasmin, Sadaf
    Rehman, Zobia
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 4283 - 4301
  • [37] Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach
    Matuszelanski, Kamil
    Kopczewska, Katarzyna
    JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH, 2022, 17 (01): : 165 - 198
  • [38] Hybrid ensemble learning approaches to customer churn prediction
    Tavassoli, Sara
    Koosha, Hamidreza
    KYBERNETES, 2022, 51 (03) : 1062 - 1088
  • [39] Customer churn prediction using data mining approach
    Qaisi, Laila M.
    Rodan, Ali
    Qaddoum, Kefaya
    Al-Sayyed, Rizik
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 348 - 352
  • [40] Support vector machine and its application in customer churn prediction
    Ying, Wei-Yun
    Qin, Zheng
    Zhao, Yu
    Li, Bing
    Li, Xiu
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2007, 27 (07): : 105 - 110