Diagonal groups and arcs over groups

被引:0
|
作者
R. A. Bailey
Peter J. Cameron
Michael Kinyon
Cheryl E. Praeger
机构
[1] University of St Andrews,School of Mathematics and Statistics
[2] University of Denver,Department of Mathematics
[3] University of Western Australia,Department of Mathematics and Statistics
来源
关键词
Diagonal group; Arc; Orthogonal array; Diagonal semilattice; Frobenius group; 20B25; 05B15; 51A45; 62K15; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
In an earlier paper by three of the present authors and Csaba Schneider, it was shown that, for m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, a set of m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+1$$\end{document} partitions of a set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, any m of which are the minimal non-trivial elements of a Cartesian lattice, either form a Latin square (if m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}), or generate a join-semilattice of dimension m associated with a diagonal group over a base group G. In this paper we investigate what happens if we have m+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+r$$\end{document} partitions with r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document}, any m of which are minimal elements of a Cartesian lattice. If m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}, this is just a set of mutually orthogonal Latin squares. We consider the case where all these squares are isotopic to Cayley tables of groups, and give an example to show the groups need not be all isomorphic. For m>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>2$$\end{document}, things are more restricted. Any m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+1$$\end{document} of the partitions generate a join-semilattice admitting a diagonal group over a group G. It may be that the groups are all isomorphic, though we cannot prove this. Under an extra hypothesis, we show that G must be abelian and must have three fixed-point-free automorphisms whose product is the identity. (We describe explicitly all abelian groups having such automorphisms.) Under this hypothesis, the structure gives an orthogonal array, and conversely in some cases. If the group is cyclic of prime order p, then the structure corresponds exactly to an arc of cardinality m+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+r$$\end{document} in the (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-dimensional projective space over the field with p elements, so all known results about arcs are applicable. More generally, arcs over a finite field of order q give examples where G is the elementary abelian group of order q. These examples can be lifted to non-elementary abelian groups using p-adic techniques.
引用
收藏
页码:2069 / 2080
页数:11
相关论文
共 50 条
  • [31] Synchronising primitive groups of diagonal type exist
    Bamberg, John
    Giudici, Michael
    Lansdown, Jesse
    Royle, Gordon F.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (03) : 1131 - 1144
  • [32] On Homogeneous Spaces for Diagonal Ind-Groups
    Fresse, Lucas
    Penkov, Ivan
    TRANSFORMATION GROUPS, 2024,
  • [33] On diagonal actions of branch groups and the corresponding characters
    Dudko, Artem
    Grigorchuk, Rostislav
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (11) : 3033 - 3055
  • [34] Base sizes of primitive groups of diagonal type
    Huang, Hong Yi
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [35] The structure of limit groups over hyperbolic groups
    Daniel Groves
    Henry Wilton
    Israel Journal of Mathematics, 2018, 226 : 119 - 176
  • [36] The structure of limit groups over hyperbolic groups
    Groves, Daniel
    Wilton, Henry
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (01) : 119 - 176
  • [37] Limit Monomial Groups over Abelian Groups
    Bostan, Sezen
    Kuzucuoglu, Mahmut
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (06) : 769 - 780
  • [38] Commutator groups of orthogonal groups over the reals with emphasis on Lorentz groups
    Knueppel, Frieder
    Nielsen, Klaus
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 2111 - 2121
  • [39] ON EQUATIONS OVER GROUPS
    MAKARLIMANOV, L
    MAKARLIMANOV, O
    JOURNAL OF ALGEBRA, 1985, 93 (01) : 165 - 168
  • [40] Diagonal invariant ideals of Toeplitz algebras on discrete groups
    许庆祥
    Science China Mathematics, 2002, (04) : 462 - 469