Diagonal groups and arcs over groups

被引:0
|
作者
R. A. Bailey
Peter J. Cameron
Michael Kinyon
Cheryl E. Praeger
机构
[1] University of St Andrews,School of Mathematics and Statistics
[2] University of Denver,Department of Mathematics
[3] University of Western Australia,Department of Mathematics and Statistics
来源
关键词
Diagonal group; Arc; Orthogonal array; Diagonal semilattice; Frobenius group; 20B25; 05B15; 51A45; 62K15; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
In an earlier paper by three of the present authors and Csaba Schneider, it was shown that, for m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, a set of m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+1$$\end{document} partitions of a set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, any m of which are the minimal non-trivial elements of a Cartesian lattice, either form a Latin square (if m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}), or generate a join-semilattice of dimension m associated with a diagonal group over a base group G. In this paper we investigate what happens if we have m+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+r$$\end{document} partitions with r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document}, any m of which are minimal elements of a Cartesian lattice. If m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}, this is just a set of mutually orthogonal Latin squares. We consider the case where all these squares are isotopic to Cayley tables of groups, and give an example to show the groups need not be all isomorphic. For m>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>2$$\end{document}, things are more restricted. Any m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+1$$\end{document} of the partitions generate a join-semilattice admitting a diagonal group over a group G. It may be that the groups are all isomorphic, though we cannot prove this. Under an extra hypothesis, we show that G must be abelian and must have three fixed-point-free automorphisms whose product is the identity. (We describe explicitly all abelian groups having such automorphisms.) Under this hypothesis, the structure gives an orthogonal array, and conversely in some cases. If the group is cyclic of prime order p, then the structure corresponds exactly to an arc of cardinality m+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+r$$\end{document} in the (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-dimensional projective space over the field with p elements, so all known results about arcs are applicable. More generally, arcs over a finite field of order q give examples where G is the elementary abelian group of order q. These examples can be lifted to non-elementary abelian groups using p-adic techniques.
引用
收藏
页码:2069 / 2080
页数:11
相关论文
共 50 条
  • [1] Diagonal groups and arcs over groups
    Bailey, R. A.
    Cameron, Peter J.
    Kinyon, Michael
    Praeger, Cheryl E.
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (09) : 2069 - 2080
  • [2] DIAGONAL SIMILARITY AND EQUIVALENCE FOR MATRICES OVER GROUPS WITH 0
    ENGEL, GM
    SCHNEIDER, H
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (03) : 389 - 403
  • [3] DIAGONAL SIMILARITY AND EQUIVALENCE FOR MATRICES OVER GROUPS WITH ZERO
    ENGEL, GM
    SCHNEIDE.H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A559 - A560
  • [4] Arcs of representations of knot groups into Lie groups
    Ben Abdelghani, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (11): : 933 - 937
  • [5] Groups of maximal arcs
    Hamilton, N
    Penttila, T
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 94 (01) : 63 - 86
  • [6] THE GEOMETRY OF DIAGONAL GROUPS
    Bailey, R. A.
    Cameron, Peter J.
    Praeger, Cheryl E.
    Schneider, Csaba
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5259 - 5311
  • [8] ARCS IN LOCALLY COMPACT GROUPS
    RICKERT, NW
    MATHEMATISCHE ANNALEN, 1967, 172 (03) : 222 - &
  • [9] Acyclic groups and wild arcs
    Berrick, AJ
    Wong, YL
    QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 : 421 - 440
  • [10] DIAGONAL EMBEDDINGS OF NILPOTENT GROUPS
    GUPTA, N
    ROCCO, N
    SIDKI, S
    ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (02) : 274 - 283