Riemannian metrics on convex sets with applications to Poincaré and log-Sobolev inequalities

被引:0
|
作者
Alexander V. Kolesnikov
Emanuel Milman
机构
[1] Higher School of Economics,Faculty of Mathematics
[2] Technion-Israel Institute of Technology,Department of Mathematics
关键词
53C21; 46E35; 58J32;
D O I
暂无
中图分类号
学科分类号
摘要
Given a probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} supported on a convex subset Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} of Euclidean space (Rd,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb {R}^d,g_0)$$\end{document}, we are interested in obtaining Poincaré and log-Sobolev type inequalities on (Ω,g0,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,g_0,\mu )$$\end{document}. To this end, we change the metric g0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_0$$\end{document} to a more general Riemannian one g, adapted in a certain sense to μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, and perform our analysis on (Ω,g,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,g,\mu )$$\end{document}. The types of metrics we consider are Hessian metrics (intimately related to associated optimal-transport problems), product metrics (which are very useful when μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is unconditional, i.e. invariant under reflections with respect to the coordinate hyperplanes), and metrics conformal to the Euclidean one, which have not been previously explored in this context. Invoking on (Ω,g,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,g,\mu )$$\end{document} tools such as Riemannian generalizations of the Brascamp–Lieb inequality and the Bakry–Émery criterion, and passing back to the original Euclidean metric, we obtain various weighted inequalities on (Ω,g0,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,g_0,\mu )$$\end{document}: refined and entropic versions of the Brascamp–Lieb inequality, weighted Poincaré and log-Sobolev inequalities, Hardy-type inequalities, etc. Key to our analysis is the positivity of the associated Lichnerowicz–Bakry–Émery generalized Ricci curvature tensor, and the convexity of the manifold (Ω,g,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,g,\mu )$$\end{document}. In some cases, we can only ensure that the latter manifold is (generalized) mean-convex, resulting in additional boundary terms in our inequalities.
引用
收藏
相关论文
共 50 条
  • [21] Time-uniform log-Sobolev inequalities and applications to propagation of chaos
    Monmarche, Pierre
    Ren, Zhenjie
    Wang, Songbo
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [22] Quantum Gaussian maximizers and log-Sobolev inequalities
    Holevo, Alexander S.
    Filippov, Sergey N.
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (01)
  • [23] ON LOG-SOBOLEV INEQUALITIES FOR INFINITE LATTICE SYSTEMS
    ZEGARLINSKI, B
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (03) : 173 - 182
  • [24] Log-Sobolev inequalities for semi-direct product operators and applications
    Piero d’Ancona
    Patrick Maheux
    Vittoria Pierfelice
    Mathematische Zeitschrift, 2016, 283 : 103 - 131
  • [25] Log-Sobolev inequalities for semi-direct product operators and applications
    d'Ancona, Piero
    Maheux, Patrick
    Pierfelice, Vittoria
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 103 - 131
  • [26] Nash and log-Sobolev inequalities for hypoelliptic operators
    Feng-Yu Wang
    manuscripta mathematica, 2009, 128 : 343 - 358
  • [27] Nash and log-Sobolev inequalities for hypoelliptic operators
    Wang, Feng-Yu
    MANUSCRIPTA MATHEMATICA, 2009, 128 (03) : 343 - 358
  • [28] Modified log-Sobolev inequalities for convex functions on the real line. Sufficient conditions
    Adamczak, Radoslaw
    Strzelecki, Michal
    STUDIA MATHEMATICA, 2015, 230 (01) : 59 - 93
  • [29] Modified log-Sobolev inequalities, Beckner inequalities and moment estimates
    Adamczak, Radoslaw
    Polaczyk, Bartlomiej
    Strzelecki, Michal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (07)
  • [30] Log-Sobolev inequality for the multislice, with applications
    Filmus, Yuval
    O'Donnell, Ryan
    Wu, Xinyu
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27 : 1 - 30