The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs

被引:0
|
作者
Shuhei Tsujie
机构
[1] Hiroshima Kokusai Gakuin University,Department of Information Design
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Chromatic symmetric function; Threshold graph; Trivially perfect graph; Cograph; Claw-free; -positive; 05C15; 05C25; 05C31; 05C60; 05E05;
D O I
暂无
中图分类号
学科分类号
摘要
Richard P. Stanley defined the chromatic symmetric function of a simple graph and has conjectured that every tree is determined by its chromatic symmetric function. Recently, Takahiro Hasebe and the author proved that the order quasisymmetric functions, which are analogs of the chromatic symmetric functions, distinguish rooted trees. In this paper, using a similar method, we prove that the chromatic symmetric functions distinguish trivially perfect graphs. Moreover, we also prove that claw-free cographs, that is, (K1,3,P4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (K_{1,3},P_{4}) $$\end{document}-free graphs belong to a known class of e-positive graphs.
引用
收藏
页码:1037 / 1048
页数:11
相关论文
共 50 条
  • [11] Chromatic symmetric functions and H-free graphs
    Angèle M. Hamel
    Chính T. Hoàng
    Jake E. Tuero
    Graphs and Combinatorics, 2019, 35 : 815 - 825
  • [12] Computing square roots of trivially perfect and threshold graphs
    Milanic, Martin
    Schaudt, Oliver
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1538 - 1545
  • [13] CRITICAL PERFECT GRAPHS AND PERFECT 3-CHROMATIC GRAPHS
    TUCKER, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (01) : 143 - 149
  • [14] On the strength of chromatic symmetric homology for graphs
    Chandler, Alex
    Sazdanovic, Radmila
    Stella, Salvatore
    Yip, Martha
    ADVANCES IN APPLIED MATHEMATICS, 2023, 150
  • [15] MARKED GRAPHS AND THE CHROMATIC SYMMETRIC FUNCTION
    Aliste-Prieto, Jose
    de Mier, Anna
    Orellana, Rosa
    Zamora, Jose
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 1881 - 1919
  • [16] On chromatic symmetric homology and planarity of graphs
    Ciliberti, Azzurra
    Moci, Luca
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (01): : 1 - 11
  • [17] Characters and chromatic symmetric functions
    Skandera, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [18] Chromatic classical symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    JOURNAL OF COMBINATORICS, 2018, 9 (02) : 401 - 409
  • [19] Chromatic Symmetric Functions of Hypertrees
    Taylor, Jair
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [20] Chromatic bases for symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):