共 50 条
A new Stirling series as continued fraction
被引:0
|作者:
Cristinel Mortici
机构:
[1] Valahia University of Târgovişte,Department of Mathematics
来源:
Numerical Algorithms
|
2011年
/
56卷
关键词:
Stirling formula;
Rate of convergence;
Approximations;
Asymptotic expansions;
33B15;
41A10;
42A16;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce the following new Stirling series
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ n!\sim \sqrt{2\pi n}\left( \frac{n}{e}\right) ^{n}\exp \frac{1}{12n+\frac{ \frac{2}{5}}{n+\frac{\frac{53}{210}}{n+\frac{\frac{195}{371}}{n+\frac{\frac{ 22,\!999}{22,\!737}}{n+\ddots}}}}}, $$\end{document} as a continued fraction, which is faster than the classical Stirling series.
引用
收藏
页码:17 / 26
页数:9
相关论文