We introduce the following new Stirling series
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ n!\sim \sqrt{2\pi n}\left( \frac{n}{e}\right) ^{n}\exp \frac{1}{12n+\frac{ \frac{2}{5}}{n+\frac{\frac{53}{210}}{n+\frac{\frac{195}{371}}{n+\frac{\frac{ 22,\!999}{22,\!737}}{n+\ddots}}}}}, $$\end{document} as a continued fraction, which is faster than the classical Stirling series.
机构:
Univ Mysore, Dept Studies Math, Mysore 570006, Karnataka, India
E China Normal Univ, Dept Math, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R ChinaUniv Mysore, Dept Studies Math, Mysore 570006, Karnataka, India
机构:
Beijing Inst Petrochem Technol, Dept Math & Phys, Beijing 102617, Peoples R ChinaBeijing Inst Petrochem Technol, Dept Math & Phys, Beijing 102617, Peoples R China
Cao, Xiaodong
Tanigawa, Yoshio
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, JapanBeijing Inst Petrochem Technol, Dept Math & Phys, Beijing 102617, Peoples R China
Tanigawa, Yoshio
Zhai, Wenguang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R ChinaBeijing Inst Petrochem Technol, Dept Math & Phys, Beijing 102617, Peoples R China
机构:
Natl Univ Singapore, Dept Math, Singapore 119260, SingaporeE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Chan, Heng Huat
Chan, Song Heng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Chan, Song Heng
Liu, Zhi-Guo
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China