A new Stirling series as continued fraction

被引:0
|
作者
Cristinel Mortici
机构
[1] Valahia University of Târgovişte,Department of Mathematics
来源
Numerical Algorithms | 2011年 / 56卷
关键词
Stirling formula; Rate of convergence; Approximations; Asymptotic expansions; 33B15; 41A10; 42A16;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the following new Stirling series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n!\sim \sqrt{2\pi n}\left( \frac{n}{e}\right) ^{n}\exp \frac{1}{12n+\frac{ \frac{2}{5}}{n+\frac{\frac{53}{210}}{n+\frac{\frac{195}{371}}{n+\frac{\frac{ 22,\!999}{22,\!737}}{n+\ddots}}}}}, $$\end{document} as a continued fraction, which is faster than the classical Stirling series.
引用
收藏
页码:17 / 26
页数:9
相关论文
共 50 条