Thermogravimetric study and kinetic modeling of semi-interpenetrating polymer network protonic conductive membranes to PEMFC

被引:0
|
作者
Julia da Silva Menezes
Felipe A. M. Loureiro
Verônica M. de A. Calado
Ana Maria Rocco
机构
[1] UFRJ,Conductive Materials and Energy Group, Chemical and Biochemical Engineering Processes, School of Chemistry
[2] UFRJ,Thermoanalysis and Rheology Laboratory, Chemical and Biochemical Engineering Processes, School of Chemistry
关键词
Semi-interpenetrating polymer network; Fuel cell; Polyethyleneimine; Thermodegradation kinetic;
D O I
暂无
中图分类号
学科分类号
摘要
This work aims at studying the thermal behavior of a group of semi-interpenetrating polymer network (SIPN) membranes used as a base of proton conductive polymeric membrane for Fuel Cells. SIPNDX membranes were obtained from the cure reaction of diglycidyl ether of bisphenol A (DGEBA) and 4.4'diaminodiphenyl-sulphone (DDS) in the presence of polyethyleneimine (PEI) in different concentrations. All samples were analyzed in a thermogravimetric analyzer (303–973 K) under nitrogen flow and heating rates at 5, 10, 15, and 20 K min−1. The classical isoconversional models of Ozawa–Flynn–Wall (OFW) and Kissenger–Akahira–Sunose (KAS) were used to obtain the kinetic parameters, activation energy (Ea), and pre-exponential factor (A). We used the Coats-Redfern model and the Criado masterplot procedure to determine the best fitting reaction mechanism. This approach showed that for DGEBA/DDS network and SIPNDX samples, with up to 40 mass % PEI, the chemical reaction mechanism (F2). For higher PEI contents, SIPND50, diffusion-related models (D1 and R2), gave the most relevant mechanisms. Atomic force microscopy (AFM) images correlated with kinetic analysis endorses that in the SIPND50 the degradation reaction progress from the interface to the center of the phase, more reactive than the bulk. These SIPNs showed good potential as a solid electrolyte in fuel cells based on the thermal properties.
引用
收藏
页码:9469 / 9486
页数:17
相关论文
共 50 条
  • [21] Preparation and characterization of a semi-interpenetrating network gel polymer electrolyte
    Li, Wei-Li
    Xu, Li-Xing
    Luo, Dan
    Yuan, Ming-Yong
    Yang, Mujie
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (01) : 39 - 46
  • [22] Structure and morphology of a polyether/polyacrylate semi-interpenetrating polymer network
    Schilling, F.C.
    Katz, H.E.
    Bair, H.E.
    Journal of Thermal Analysis and Calorimetry, 2000, 59 (01) : 83 - 92
  • [23] Nanostructures developed from semi-interpenetrating polymer network structures
    Jain, SH
    Murata, K
    Anazawa, T
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2003, 204 (5-6) : 893 - 902
  • [24] Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications
    Rinoldi, Chiara
    Lanzi, Massimiliano
    Fiorelli, Roberto
    Nakielski, Pawel
    Zembrzycki, Krzysztof
    Kowalewski, Tomasz
    Urbanek, Olga
    Grippo, Valentina
    Jezierska-Wozniak, Katarzyna
    Maksymowicz, Wojciech
    Camposeo, Andrea
    Bilewicz, Renata
    Pisignano, Dario
    Sanai, Nader
    Pierini, Filippo
    BIOMACROMOLECULES, 2021, 22 (07) : 3084 - 3098
  • [25] A semi-interpenetrating network for temperature-sensitive polymer system
    Yuk, SH
    Cho, SH
    KOREA POLYMER JOURNAL, 2000, 8 (02): : 89 - 94
  • [26] Preparation and characterization of a semi-interpenetrating network gel polymer electrolyte
    Li, Wei-
    Xu, Li-Xing
    Luo, Dan
    Yuan, Ming-Yong
    Yang, Mujie
    Journal of Applied Polymer Science, 2008, 108 (01): : 39 - 46
  • [27] Synthesis of a Semi-Interpenetrating Polymer Network as a Bioactive Curcumin Film
    Naeema Mayet
    Pradeep Kumar
    Yahya E. Choonara
    Lomas K. Tomar
    Charu Tyagi
    Lisa C. du Toit
    Viness Pillay
    AAPS PharmSciTech, 2014, 15 : 1476 - 1489
  • [28] Structure and Morphology of a Polyether/Polyacrylate Semi-interpenetrating Polymer Network
    F. C. Schilling
    H. E. Katz
    H. E. Bair
    Journal of Thermal Analysis and Calorimetry, 2000, 59 : 83 - 92
  • [29] Structure and morphology of a polyether/polyacrylate semi-interpenetrating polymer network
    Schilling, FC
    Katz, HE
    Bair, HE
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2000, 59 (1-2) : 83 - 92
  • [30] Polyethyleneimine-based semi-interpenetrating network membranes for fuel cells
    Loureiro, F. A. M.
    Pereira, R. P.
    Rocco, A. M.
    POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01): : 1153 - 1163