Thermogravimetric study and kinetic modeling of semi-interpenetrating polymer network protonic conductive membranes to PEMFC

被引:0
|
作者
Julia da Silva Menezes
Felipe A. M. Loureiro
Verônica M. de A. Calado
Ana Maria Rocco
机构
[1] UFRJ,Conductive Materials and Energy Group, Chemical and Biochemical Engineering Processes, School of Chemistry
[2] UFRJ,Thermoanalysis and Rheology Laboratory, Chemical and Biochemical Engineering Processes, School of Chemistry
关键词
Semi-interpenetrating polymer network; Fuel cell; Polyethyleneimine; Thermodegradation kinetic;
D O I
暂无
中图分类号
学科分类号
摘要
This work aims at studying the thermal behavior of a group of semi-interpenetrating polymer network (SIPN) membranes used as a base of proton conductive polymeric membrane for Fuel Cells. SIPNDX membranes were obtained from the cure reaction of diglycidyl ether of bisphenol A (DGEBA) and 4.4'diaminodiphenyl-sulphone (DDS) in the presence of polyethyleneimine (PEI) in different concentrations. All samples were analyzed in a thermogravimetric analyzer (303–973 K) under nitrogen flow and heating rates at 5, 10, 15, and 20 K min−1. The classical isoconversional models of Ozawa–Flynn–Wall (OFW) and Kissenger–Akahira–Sunose (KAS) were used to obtain the kinetic parameters, activation energy (Ea), and pre-exponential factor (A). We used the Coats-Redfern model and the Criado masterplot procedure to determine the best fitting reaction mechanism. This approach showed that for DGEBA/DDS network and SIPNDX samples, with up to 40 mass % PEI, the chemical reaction mechanism (F2). For higher PEI contents, SIPND50, diffusion-related models (D1 and R2), gave the most relevant mechanisms. Atomic force microscopy (AFM) images correlated with kinetic analysis endorses that in the SIPND50 the degradation reaction progress from the interface to the center of the phase, more reactive than the bulk. These SIPNs showed good potential as a solid electrolyte in fuel cells based on the thermal properties.
引用
收藏
页码:9469 / 9486
页数:17
相关论文
共 50 条
  • [1] Thermogravimetric study and kinetic modeling of semi-interpenetrating polymer network protonic conductive membranes to PEMFC
    da Silva Menezes, Julia
    Loureiro, Felipe A. M.
    de A. Calado, Veronica M.
    Rocco, Ana Maria
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (17) : 9469 - 9486
  • [2] Nanocomposite Anion Exchange Membranes with a Conductive Semi-Interpenetrating Silica Network
    Sgreccia, Emanuela
    Di Vona, Maria Luisa
    Antonaroli, Simonetta
    Ercolani, Gianfranco
    Sette, Marco
    Pasquini, Luca
    Knauth, Philippe
    MEMBRANES, 2021, 11 (04)
  • [3] All-solid-state proton conductive membranes prepared by a semi-interpenetrating polymer network (semi-IPN)
    Lee, Myung-Jin
    Choi, Yeong Suk
    Kang, Yong Soo
    Choi, Jae-Hwan
    Kang, Moon-Sung
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (35) : 18522 - 18527
  • [4] Novel semi-interpenetrating polymer network hybrid membranes for proton conduction
    Monroy-Barreto, Minerva
    Aguilar, Julio Cesar
    Rodriguez de San Miguel, Eduardo
    Ocampo, Ana Lilia
    Munoz, Maria
    de Gyves, Josefina
    JOURNAL OF MEMBRANE SCIENCE, 2009, 344 (1-2) : 92 - 100
  • [5] Modeling and optimization of Semi-Interpenetrating Polymer Network (SIPN) particle process
    Lin, Weijie
    Biegler, Lorenz T.
    Jacobson, Annette
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [6] Characterization of semi-interpenetrating polymer network polystyrene cation-exchange membranes
    Choi, YJ
    Kang, MS
    Moon, SH
    JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 88 (06) : 1488 - 1496
  • [7] A semi-interpenetrating network system for a polymer membrane
    Kim, SR
    Yuk, SH
    Jhon, MS
    EUROPEAN POLYMER JOURNAL, 1997, 33 (07) : 1009 - 1014
  • [8] Development of hybrid polymer electrolyte membranes based on the semi-interpenetrating network concept
    Colicchio, I.
    Keul, H.
    Sanders, D.
    Simon, U.
    Weirich, T. E.
    Moeller, M.
    FUEL CELLS, 2006, 6 (3-4) : 225 - 236
  • [9] Proton conducting membranes based on semi-interpenetrating polymer network of Nafion® and polybenzimidazole
    Guan, Yisi
    Pu, Hongting
    Pan, Haiyan
    Chang, Zhihong
    Jin, Ming
    POLYMER, 2010, 51 (23) : 5473 - 5481
  • [10] Kinetic Modeling of Semi-Interpenetrating Polymer Network (SIPN) Process - A Comprehensive Study on the Case of Polyethylene/Polystyrene Semi-I IPN
    Lin, Weijie
    Biegler, Lorenz T.
    Jacobson, Annette M.
    MACROMOLECULAR THEORY AND SIMULATIONS, 2011, 20 (02) : 146 - 165