Efficient quantum homomorphic encryption scheme with flexible evaluators and its simulation

被引:0
|
作者
Jiang Liu
Qin Li
Junyu Quan
Can Wang
Jinjing Shi
Haozhen Situ
机构
[1] Xiangtan University,School of Cyberspace Security
[2] Central South University,School of Computer Science and Engineering
[3] South China Agricultural University,College of Mathematics and Informatics
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Quantum homomorphic encryption; Quantum computation; Quantum cryptography; 81P68; 68P25; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum homomorphic encryption (QHE) allows computation on encrypted data by employing the principles of quantum mechanics. Usually, only one evaluator is chosen to complete such computation and it is easy to get overburdened in network. In addition, users sometimes do not trust only one evalutor. Recently, Chen et al. proposed a very flexible QHE scheme based on the idea of (k, n)-threshold quantum state sharing where d evaluators can finish the required operations by cooperating together as long as k≤d≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k \le d \le n$$\end{document}. But it can only calculate some of single-qubit unitary operations when k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} and the quantum capability of each evaluator is a bit demanding. In this paper, we propose an improved flexible QHE scheme which extends the operations that can be computed in the QHE scheme proposed by Chen et al. to involve all single-qubit unitary operations even if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} and reduces the quantum capability of at least d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d-1$$\end{document} evaluators. We also give an example to show the feasibility of the improved scheme and simulate it on the IBM’s cloud quantum computing platform.
引用
收藏
页码:577 / 591
页数:14
相关论文
共 50 条
  • [41] Non-interactive quantum homomorphic encryption scheme based on the rotation operator
    Wang, ShuoLin
    Shang, Tao
    Liu, JianWei
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (04)
  • [42] Efficient Design-Time Flexible Hardware Architecture for Accelerating Homomorphic Encryption
    Ayduman, Can
    Kocer, Emre
    Kirbiyik, Selim
    Mert, Ahmet Can
    Savas, Erkay
    2023 IFIP/IEEE 31ST INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION, VLSI-SOC, 2023, : 130 - 136
  • [43] Efficient multi-key fully homomorphic encryption scheme from RLWE
    Che X.
    Zhou H.
    Yang X.
    Zhou T.
    Liu L.
    Li N.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (01): : 87 - 95
  • [44] Two-round quantum homomorphic encryption scheme based on matrix decomposition
    Shang, Tao
    Wang, Shuolin
    Jiang, Yazhuo
    Liu, Jianwei
    QUANTUM INFORMATION PROCESSING, 2023, 22 (12)
  • [45] Two-round quantum homomorphic encryption scheme based on matrix decomposition
    Tao Shang
    Shuolin Wang
    Yazhuo Jiang
    Jianwei Liu
    Quantum Information Processing, 22
  • [46] An Efficient Polynomial Multiplier Architecture for the Bootstrapping Algorithm in a Fully Homomorphic Encryption Scheme
    Tan, Weihang
    Au, Aengran
    Aase, Benjamin
    Aao, Shuhong
    Lao, Yingjie
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2019), 2019, : 85 - 90
  • [47] ENERGY EFFICIENT ROUTING PROTOCOL FOR SECURITY ANALYSIS SCHEME USING HOMOMORPHIC ENCRYPTION
    Pragadeswaran, S.
    Subha, N.
    Varunika, S.
    Moulishwar, P.
    Sanjay, R.
    Karthikeyan, P.
    Aakash, R.
    Vaasavathathaii, E.
    ARCHIVES FOR TECHNICAL SCIENCES, 2024, (31): : 148 - 158
  • [48] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
    张静文
    陈秀波
    徐刚
    杨义先
    Chinese Physics B, 2021, 30 (07) : 92 - 101
  • [49] A More Efficient Fully Homomorphic Encryption Scheme Based on GSW and DM Schemes
    Wang, Xun
    Luo, Tao
    Li, Jianfeng
    SECURITY AND COMMUNICATION NETWORKS, 2019,
  • [50] Quantum Homomorphic Encryption Based on Quantum Obfuscation
    Zhang, Yuan-jing
    Liu, Jian-wei
    Shang, Tao
    Wu, Wei
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 2010 - 2015