Efficient quantum homomorphic encryption scheme with flexible evaluators and its simulation

被引:0
|
作者
Jiang Liu
Qin Li
Junyu Quan
Can Wang
Jinjing Shi
Haozhen Situ
机构
[1] Xiangtan University,School of Cyberspace Security
[2] Central South University,School of Computer Science and Engineering
[3] South China Agricultural University,College of Mathematics and Informatics
来源
关键词
Quantum homomorphic encryption; Quantum computation; Quantum cryptography; 81P68; 68P25; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum homomorphic encryption (QHE) allows computation on encrypted data by employing the principles of quantum mechanics. Usually, only one evaluator is chosen to complete such computation and it is easy to get overburdened in network. In addition, users sometimes do not trust only one evalutor. Recently, Chen et al. proposed a very flexible QHE scheme based on the idea of (k, n)-threshold quantum state sharing where d evaluators can finish the required operations by cooperating together as long as k≤d≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k \le d \le n$$\end{document}. But it can only calculate some of single-qubit unitary operations when k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} and the quantum capability of each evaluator is a bit demanding. In this paper, we propose an improved flexible QHE scheme which extends the operations that can be computed in the QHE scheme proposed by Chen et al. to involve all single-qubit unitary operations even if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} and reduces the quantum capability of at least d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d-1$$\end{document} evaluators. We also give an example to show the feasibility of the improved scheme and simulate it on the IBM’s cloud quantum computing platform.
引用
收藏
页码:577 / 591
页数:14
相关论文
共 50 条
  • [1] Efficient quantum homomorphic encryption scheme with flexible evaluators and its simulation
    Liu, Jiang
    Li, Qin
    Quan, Junyu
    Wang, Can
    Shi, Jinjing
    Situ, Haozhen
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (03) : 577 - 591
  • [2] An efficient fully homomorphic encryption scheme
    El-Yahyaoui, Ahmed
    El Kettani, Mohamed Dafir Ech-Cherif
    International Journal of Network Security, 2019, 21 (01) : 91 - 99
  • [3] Flexible Threshold Quantum Homomorphic Encryption on Quantum Networks
    Tang, Yongli
    Guo, Menghao
    Li, Binyong
    Geng, Kaixin
    Yu, Jinxia
    Qin, Baodong
    ENTROPY, 2025, 27 (01)
  • [4] A Secure Multiparty Quantum Homomorphic Encryption Scheme
    Zhang, Jing-Wen
    Chen, Xiu-Bo
    Xu, Gang
    Li, Heng-Ji
    Wang, Ya-Lan
    Miao, Li-Hua
    Yang, Yi-Xian
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 2835 - 2848
  • [5] Cloud-ElGamal: An Efficient Homomorphic Encryption Scheme
    El Makkaoui, Khalid
    Beni-Hssane, Abderrahim
    Ezzati, Abdellah
    2016 INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), 2016, : P63 - P66
  • [6] An Efficient Somewhat Homomorphic Encryption Scheme Based on Factorization
    Gavin, Gerald
    CRYPTOLOGY AND NETWORK SECURITY, CANS 2016, 2016, 10052 : 451 - 464
  • [7] Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing
    Chen, Xiu-Bo
    Sun, Yi-Ru
    Xu, Gang
    Yang, Yi-Xian
    INFORMATION SCIENCES, 2019, 501 : 172 - 181
  • [8] Quantum fully homomorphic encryption scheme based on universal quantum circuit
    Liang, Min
    QUANTUM INFORMATION PROCESSING, 2015, 14 (08) : 2749 - 2759
  • [9] Quantum fully homomorphic encryption scheme based on universal quantum circuit
    Min Liang
    Quantum Information Processing, 2015, 14 : 2749 - 2759
  • [10] An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption
    Xiaoqiang Sun
    Ting Wang
    Zhiwei Sun
    Ping Wang
    Jianping Yu
    Weixin Xie
    International Journal of Theoretical Physics, 2017, 56 : 1335 - 1345