共 50 条
Physical-Biological Coupling in Southern Lake Michigan: Influence of Episodic Sediment Resuspension on Phytoplankton
被引:0
|作者:
David F. Millie
Gary L. Fahnenstiel
Steven E. Lohrenz
Hunter J. Carrick
Thomas H. Johengen
Oscar M.E. Schofield
机构:
[1] University of South Florida,Florida Institute of Oceanography
[2] National Oceanic and Atmospheric Administration,Lake Michigan Field Station, Great Lakes Environmental Research Laboratory
[3] University of Southern Mississippi,Department of Marine Science
[4] Stennis Space Center,School of Forest Resources
[5] Pennsylvania State University, Fisheries and Wildlife
[6] University of Michigan,Cooperative Institute of Limnology and Ecosystems Research
[7] Rutgers University,Institute of Marine and Coastal Sciences
来源:
关键词:
Coastal resuspension;
Diatoms;
Great Lakes;
Growth;
Microalgae;
Photosynthesis;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The influence of episodic, sediment resuspension on phytoplankton abundance/volume and composition, the photosynthetic maximum rate (PBmax) and efficiency (αB), and chlorophyll-specific growth (μChl) was evaluated during the spring isothermal period in southern Lake Michigan (Laurentian Great Lakes, USA). Resuspension altered the nutrient and light climate of nearshore waters; light attenuation (Kd) and phosphorus concentrations corresponded (p ≤ 0.0001 and p ≤ 0.001, respectively) with concentrations of suspended particulate matter (SPM). Phytoplankton cell volume and diatom cell abundance and volume were not associated with SPM concentrations (p > 0.05). Diatom composition displayed spatial dissimilarities corresponding with resuspension (p ≤ 0.001); small centric diatoms exhibiting meroplanktonic life histories and pennate diatoms considered benthic in origin were most abundant within SPM-impacted, nearshore waters whereas taxa typically comprising assemblages in optically-clear, offshore waters and the basin-wide, spring bloom were not. Values of PBmax and αB corresponded (p ≤ 0.0001) with both Kd coefficients and SPM concentrations, potentially reflecting increased light harvesting/utilization within impacted assemblages. However, integral production was inversely associated with Kd coefficients and SPM concentrations (p < 0.0001) and photosynthesis was light-limited (or nearly so) for most assemblages. Although μChl values corresponded with Kd coefficients (p ≤ 0.05), values were quite low (x ± S.E., 0.10 ± 0.004 d-1) throughout the study. Most likely, distinct rate processes between SPM- and non-impacted assemblages reflected short-term compositional (and corresponding physiological) variations due to infusion of meroplankton and/or tributary-derived phytoplankton. Overall, resuspension appears to have little, if any, long-term impact upon the structure and function of the lake’s phytoplankton.
引用
收藏
页码:393 / 408
页数:15
相关论文