SU(3)-Instantons and G2,Spin(7)-Heterotic String Solitons

被引:0
|
作者
Petar Ivanov
Stefan Ivanov
机构
[1] University of Sofia “St. Kl. Ohridski”,Faculty of Mathematics and Informatics
来源
关键词
Neural Network; Statistical Physic; Soliton; Complex System; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Necessary and sufficient conditions to the existence of a hermitian connection with totally skew-symmetric torsion and holonomy contained in SU(3) are given. A formula for the Riemannian scalar curvature is obtained. Non-compact solution to the supergravity-type I equations of motion with non-zero flux and non-constant dilaton is found in dimension 6. Non-conformally flat non-compact solutions to the supergravity-type I equations of motion with non-zero flux and non-constant dilaton are found in dimensions 7 and 8. A Riemannian metric with holonomy contained in G2 arises from our considerations and Hitchin’s flow equations, which seems to be new. Compact examples of SU(3),G2 and Spin(7) instanton satisfying the anomaly cancellation conditions are presented.
引用
收藏
页码:79 / 102
页数:23
相关论文
共 50 条
  • [41] INVARIANT-THEORY OF G2 AND SPIN7
    SCHWARZ, GW
    COMMENTARII MATHEMATICI HELVETICI, 1988, 63 (04) : 624 - 663
  • [42] The Infinitesimal Moduli Space of Heterotic G2 Systems
    de la Ossa, Xenia
    Larfors, Magdalena
    Svanes, Eirik E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (02) : 727 - 775
  • [43] ALGEBRAIC STRUCTURE OF K-THEORY OF SU(3)/G2 AND SPIN(9)-F4
    SHAPIRO, JM
    ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (04) : 509 - 515
  • [44] Classification of SU(4) x SU(2) x U(1) heterotic-string models
    Faraggi, Alon E.
    Sonmez, Hasan
    PHYSICAL REVIEW D, 2015, 91 (06):
  • [45] Compact G2 holonomy spaces from SU(3) structures
    Andriolo, S.
    Shiu, G.
    Triendl, H.
    Van Riet, T.
    Venken, G.
    Zoccarato, G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (03)
  • [46] SUBSTITUTION GROUPS OF REPRESENTATIONS OF GROUPS G2 AND SU3
    ALISHAUS.SI
    RUDZIKAS, ZB
    YUTSIS, AP
    DOKLADY AKADEMII NAUK SSSR, 1967, 172 (01): : 58 - &
  • [47] THE MATRIX REPRESENTATIONS OF G2 .2. REPRESENTATIONS IN AN SU(3) BASIS
    LEBLANC, R
    ROWE, DJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) : 767 - 776
  • [48] Division Polynomials with Galois Group SU3(3).2 ≅ G2(2)
    Roberts, David P.
    ADVANCES IN THE THEORY OF NUMBERS, 2015, : 169 - 206
  • [49] DEGENERATE ENVELOPING-ALGEBRAS OF SU(3), SO(5), G2 AND SU(4)
    GIROUX, Y
    COUTURE, M
    SHARP, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (04): : 715 - 725
  • [50] Superconformal algebras for generalized Spin(7) and G2 connected sums
    Marc-Antoine Fiset
    Mateo Galdeano
    Journal of High Energy Physics, 2021