Distance Functions Between Sets in (q1, q2)-Quasimetric Spaces

被引:0
|
作者
A. V. Greshnov
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
(; )-quasimetric; Hausdorff distance; closed set; completeness;
D O I
暂无
中图分类号
学科分类号
摘要
We prove completeness theorems for the set of all d-closed d-bounded sets in a (q1, q2)-quasimetric space (X, d) equipped with suitable analogs of the Hausdorff distance.
引用
收藏
页码:417 / 425
页数:8
相关论文
共 50 条
  • [31] Methanol Q2 contracts see 20% hike over Q1 - Market tightness
    不详
    EUROPEAN CHEMICAL NEWS, 1997, 67 (1758): : 10 - 10
  • [32] Application of a Bayesian method for optimal subset regression to linkage analysis of Q1 and Q2
    Suh, YJ
    Finch, SJ
    Mendell, NR
    GENETIC EPIDEMIOLOGY, 2001, 21 : S706 - S711
  • [33] Recent and anticipated novel drug approvals (Q2 2024 through Q1 2025)
    Rim, Matthew H.
    Karas, Brittany L.
    Barada, Farah
    Dean, Collin
    Levitsky, Andrew M.
    AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY, 2024, 81 (16) : 733 - 738
  • [34] On distance-regular graphs with intersection arrays {q2 - 1, q(q - 2), q+2; 1, q, (q+1)(q-2)}
    Makhnev, A. A.
    Paduchikh, D., V
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2021, 27 (01): : 146 - 156
  • [35] Q-Functions on Quasimetric Spaces and Fixed Points for Multivalued Maps
    Marin, J.
    Romaguera, S.
    Tirado, P.
    FIXED POINT THEORY AND APPLICATIONS, 2011,
  • [36] Q1(1290) AND Q2(1400) DECAY-RATES AND THEIR SU(3) IMPLICATIONS
    CARNEGIE, RK
    CASHMORE, RJ
    DUNWOODIE, WM
    LASINSKI, TA
    LEITH, DWGS
    PHYSICS LETTERS B, 1977, 68 (03) : 287 - 291
  • [38] 非交错树T(q1,q2,q3,q4)的优美性
    王宜举
    周建钦
    方芸
    刘香兰
    洛阳大学学报, 1997, (04) : 8 - 12
  • [39] (q1, q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications
    Awan, Muhammad Uzair
    Javed, Muhammad Zakria
    Slimane, Ibrahim
    Kashuri, Artion
    Cesarano, Clemente
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2022, 6 (08)
  • [40] Measurements of the structure functions F2(x, Q2) and FL(x, Q2) at low Q2
    Petrukhin, A
    DEEP INELASTIC SCATTERING, 2005, 792 : 233 - 236