Asymptotics of optimal control in the problem of harmonic wave scattering by an obstacle

被引:0
|
作者
Savenkova A.S. [1 ]
机构
[1] Institute of Applied Mathematics, Far East Division, Russian Academy of Sciences, Vladivostok 690041
基金
俄罗斯基础研究基金会;
关键词
Asymptotics of control; Harmonic wave scattering by an obstacle; Helmholtz equation; Optimal impedance control;
D O I
10.1134/S096554250709014X
中图分类号
学科分类号
摘要
Optimal impedance control for the Helmholtz equation in an unbounded domain is studied. Asymptotics of the optimal control with respect to a regularization parameter are constructed. © 2007 Pleiades Publishing, Ltd.
引用
收藏
页码:1538 / 1543
页数:5
相关论文
共 50 条
  • [31] Optimal control of unilateral obstacle problem with a source term
    Ghanem, Radouen
    POSITIVITY, 2009, 13 (02) : 321 - 338
  • [32] Optimal control of an elastic-rigid obstacle problem
    Ran, Qinghua
    Zhang, Jie
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 132
  • [33] Scattering of a scalar time-harmonic wave by a penetrable obstacle with a thin layer
    Boutarene, K. E.
    Cocquet, P. -H.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (02) : 264 - 310
  • [34] Asymptotics of the Optimal Time in a Time-Optimal Control Problem with a Small Parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 : S62 - S71
  • [35] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 61 - 70
  • [36] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (01): : 71 - 80
  • [37] Asymptotics of a solution to an optimal boundary control problem in a bounded domain
    Danilin, A. R.
    Zorin, A. P.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 75 - 82
  • [38] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 62 - 71
  • [39] Asymptotics of a solution to a linear optimal control problem in the singular case
    Parysheva, Y. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (03): : 266 - 270
  • [40] On a Highly Nonlinear Self-Obstacle Optimal Control Problem
    Di Donato, Daniela
    Mugnai, Dimitri
    APPLIED MATHEMATICS AND OPTIMIZATION, 2015, 72 (02): : 261 - 290