Characterizing and modeling cloud applications/jobs on a Google data center

被引:0
|
作者
Sheng Di
Derrick Kondo
Franck Cappello
机构
[1] INRIA,
[2] Argonne National Laboratory,undefined
来源
关键词
Google data center; Cloud task; Characterization and analysis; Large-scale system trace;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we characterize and model Google applications and jobs, based on a 1-month Google trace from a large-scale Google data center. We address four contributions: (1) we compute the valuable statistics about task events and resource utilization for Google applications, based on various types of resources and execution types; (2) we analyze the classification of applications via a K-means clustering algorithm with optimized number of sets, based on task events and resource usage; (3) we study the correlation of Google application properties and running features (e.g., job priority and scheduling class); (4) we finally build a model that can simulate Google jobs/tasks and dynamic events, in accordance with Google trace. Experiments show that the tasks simulated based on our model exhibit fairly analogous features with those in Google trace. 95+ % of tasks’ simulation errors are <\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}20 %, confirming a high accuracy of our simulation model.
引用
收藏
页码:139 / 160
页数:21
相关论文
共 50 条
  • [31] Modellus: Automated Modeling of Complex Internet Data Center Applications
    Desnoyers, Peter
    Wood, Timothy
    Shenoy, Prashant
    Singh, Rahul
    Patil, Sangameshwar
    Vin, Harrick
    ACM TRANSACTIONS ON THE WEB, 2012, 6 (02)
  • [32] Data Modeling in the Cloud
    Jukic, Nenad
    Ruiz, Melanie K.
    Shea, Sarah N.
    Nestorov, Svetlozar
    Vrbsky, Susan V.
    Velasco, Miguel
    Jukic, Boris
    AMCIS 2013 PROCEEDINGS, 2013,
  • [33] Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
    Amani, Meisam
    Ghorbanian, Arsalan
    Ahmadi, Seyed Ali
    Kakooei, Mohammad
    Moghimi, Armin
    Mirmazloumi, S. Mohammad
    Moghaddam, Sayyed Hamed Alizadeh
    Mahdavi, Sahel
    Ghahremanloo, Masoud
    Parsian, Saeid
    Wu, Qiusheng
    Brisco, Brian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 5326 - 5350
  • [34] Cloud and Data Center Performance
    Li, Bo
    Li, Baochun
    Liu, Fangming
    IEEE NETWORK, 2013, 27 (04): : 6 - 7
  • [35] Energy Modeling of Different Virtual Machine Replication Schemes in a Cloud Data Center
    Mondal, Subrota K.
    Muppala, Jogesh K.
    2014 IEEE INTERNATIONAL CONFERENCE (ITHINGS) - 2014 IEEE INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) - 2014 IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL-SOCIAL COMPUTING (CPS), 2014, : 486 - 493
  • [36] Nutshell-Simulation Toolkit for Modeling Data Center Network and Cloud Computing
    Rahman, Ubaid Ur
    Bilal, Kashif
    Erbad, Aiman
    Khalid, Osman
    Khans, Samee U.
    IEEE ACCESS, 2019, 7 : 19922 - 19942
  • [37] ACDP: Prediction of Application Cloud Data center Proficiency using Fuzzy modeling
    Jaiganesh, M.
    Kumar, A. Vincent Antony
    Sivasankari, R.
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 3005 - 3018
  • [38] Service Reliability Modeling of the IT Infrastructure of Active-active Cloud Data Center
    Liu, Yue
    Li, Xiaoyang
    Kang, Rui
    Xiao, Lianghua
    2016 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHENGDU), 2016,
  • [39] Power Modeling for Energy-Efficient Resource Management in a Cloud Data Center
    Anurina Tarafdar
    Soumi Sarkar
    Rajib K Das
    Sunirmal Khatua
    Journal of Grid Computing, 2023, 21
  • [40] The placement method of resources and applications based on request prediction in cloud data center
    Liang Quan
    Zhang Jing
    Zhang Yong-hui
    Liang Jiu-mei
    INFORMATION SCIENCES, 2014, 279 : 735 - 745