Hermite interpolation theorems for band-limited functions of the linear canonical transforms with equidistant samples

被引:0
|
作者
M. H. Annaby
I. A. Al-Abdi
A. F. Ghaleb
M. S. Abou-Dina
机构
[1] Cairo University,Department of Mathematics, Faculty of Science
[2] Hajjah University,Department of Mathematics
来源
Numerical Algorithms | 2023年 / 94卷
关键词
Linear canonical transform; Sampling theory; Truncation error;
D O I
暂无
中图分类号
学科分类号
摘要
We establish convergence analysis for Hermite-type interpolations for L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2} ( \mathbb {R})$$\end{document}-entire functions of exponential type whose linear canonical transforms (LCT) are compactly supported. The results bridges the theoretical gap in implementing the derivative sampling theorems for band-limited signals in the LCT domain. Both complex analysis and real analysis techniques are established to derive the convergence analysis. The truncation error is also investigated and rigorous estimates for it are given. Nevertheless, the convergence rate is O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/\sqrt{N})$$\end{document}, which is slow. Consequently the work on regularization techniques is required.
引用
收藏
页码:1281 / 1308
页数:27
相关论文
共 50 条
  • [41] RELEVANT SAMPLING OF BAND-LIMITED FUNCTIONS
    Bass, Richard F.
    Groechenig, Karlheinz
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) : 43 - 58
  • [42] Spectral Analysis of Sampled Band-Limited Signals in the Offset Linear Canonical Transform Domain
    Xu, Shuiqing
    Chai, Yi
    Hu, Youqiang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (12) : 3979 - 3997
  • [43] Spectral Analysis of Sampled Band-Limited Signals in the Offset Linear Canonical Transform Domain
    Shuiqing Xu
    Yi Chai
    Youqiang Hu
    Circuits, Systems, and Signal Processing, 2015, 34 : 3979 - 3997
  • [44] Cases where the linear canonical transform of a signal has compact support or is band-limited
    Healy, John J.
    Sheridan, John T.
    OPTICS LETTERS, 2008, 33 (03) : 228 - 230
  • [45] ERROR OF LINEAR-ESTIMATION OF LOST SAMPLES IN AN OVERSAMPLED BAND-LIMITED SIGNAL
    MARKS, RJ
    RADBEL, D
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (03): : 648 - 654
  • [46] Band-limited interpolation for maximum intensity projection images
    Kim, S
    Song, SMH
    Kim, NH
    Lee, G
    Kreang-arekul, S
    Iwase, A
    Taylor, R
    HIGH-SPEED IMAGING AND SEQUENCE ANALYSIS III, 2001, 4308 : 78 - 85
  • [47] POLYNOMIAL INTERPOLATION ERRORS FOR BAND-LIMITED RANDOM SIGNALS
    KERR, RB
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1976, 6 (11): : 772 - 774
  • [49] BAND-LIMITED INTERPOLATION OPERATORS AND APPLICATIONS IN SEISMIC PROCESSING
    KIRCHHEIMER, F
    GEOPHYSICS, 1985, 50 (02) : 354 - 355
  • [50] INTERPOLATION AND EXTRAPOLATION OF AN IDEAL BAND-LIMITED RANDOM PROCESS
    MORGAN, DR
    ARIDGIDES, A
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (01): : 43 - 47