Hermite interpolation theorems for band-limited functions of the linear canonical transforms with equidistant samples

被引:0
|
作者
M. H. Annaby
I. A. Al-Abdi
A. F. Ghaleb
M. S. Abou-Dina
机构
[1] Cairo University,Department of Mathematics, Faculty of Science
[2] Hajjah University,Department of Mathematics
来源
Numerical Algorithms | 2023年 / 94卷
关键词
Linear canonical transform; Sampling theory; Truncation error;
D O I
暂无
中图分类号
学科分类号
摘要
We establish convergence analysis for Hermite-type interpolations for L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2} ( \mathbb {R})$$\end{document}-entire functions of exponential type whose linear canonical transforms (LCT) are compactly supported. The results bridges the theoretical gap in implementing the derivative sampling theorems for band-limited signals in the LCT domain. Both complex analysis and real analysis techniques are established to derive the convergence analysis. The truncation error is also investigated and rigorous estimates for it are given. Nevertheless, the convergence rate is O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/\sqrt{N})$$\end{document}, which is slow. Consequently the work on regularization techniques is required.
引用
收藏
页码:1281 / 1308
页数:27
相关论文
共 50 条