On permutable subgroups of finite groups

被引:2
|
作者
M. Asaad
A. A. Heliel
机构
[1] Cairo University,
[2] Faculty of Science,undefined
[3] Department of Mathematics,undefined
[4] Giza 12613,undefined
[5] Egypt,undefined
[6] e-mail: moasmohs@frcu.eun.eg,undefined
来源
Archiv der Mathematik | 2003年 / 80卷
关键词
Mathematics Subject Classification (1991): 20D10, 20D30.;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frak Z $\end{document} be a complete set of Sylow subgroups of a finite group G, that is, for each prime p dividing the order of G, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frak Z $\end{document} contains exactly one and only one Sylow p-subgroup of G. A subgroup H of a finite group G is said to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frak Z $\end{document}-permutable if H permutes with every member of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frak Z $\end{document}. The purpose here is to study the influence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frak Z $\end{document}-permutability of some subgroups on the structure of finite groups. Some recent results are generalized.
引用
收藏
页码:113 / 118
页数:5
相关论文
共 50 条
  • [21] On some permutable embeddings of subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Beidleman, James C.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (02) : 339 - 347
  • [22] Finite Groups with Given Weakly σ-Permutable Subgroups
    C. Cao
    Z. Wu
    W. Guo
    Siberian Mathematical Journal, 2018, 59 : 157 - 165
  • [23] On π-S-permutable subgroups of finite groups
    A. Ballester-Bolinches
    Yangming Li
    Ning Su
    Zhuoqing Xie
    Mediterranean Journal of Mathematics, 2016, 13 : 93 - 99
  • [24] PERMUTABLE SUBGROUPS OF SOME FINITE PERMUTATION GROUPS
    STONEHEWER, SE
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 28 (MAR) : 222 - 236
  • [25] Subnormal, permutable, and embedded subgroups in finite groups
    Beidleman, James C.
    Ragland, Mathew F.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (04): : 915 - 921
  • [26] On π-S-permutable subgroups of finite groups
    Ballester-Bolinches, A.
    Li, Yangming
    Su, Ning
    Xie, Zhuoqing
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 93 - 99
  • [27] On finite factorized groups with permutable subgroups of factors
    Victor S. Monakhov
    Alexander A. Trofimuk
    Archiv der Mathematik, 2021, 116 : 241 - 249
  • [28] Finite Groups with H-Permutable Subgroups
    Guo, Wenbin
    Cao, Chenchen
    Skiba, Alexander N.
    Sinitsa, Darya A.
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2017, 5 (01) : 83 - 92
  • [29] Finite Groups with Given Weakly σ-Permutable Subgroups
    Cao, C.
    Wu, Z.
    Guo, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 157 - 165
  • [30] Finite soluble groups with permutable subnormal subgroups
    Alejandre, MJ
    Ballester-Bolinches, A
    Pedraza-Aguilera, MC
    JOURNAL OF ALGEBRA, 2001, 240 (02) : 705 - 722