Resolvability in circulant graphs

被引:0
|
作者
Muhammad Salman
Imran Javaid
Muhammad Anwar Chaudhry
机构
[1] Bahauddin Zakariya University,Center for Advanced Studies in Pure and Applied Mathematics
关键词
Circulant graphs; metric dimension; partition dimension; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u, υ ∈ V (G) there is a vertex w ∈ W such that d(u,w) ≠ d(υ,w). A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by dim(G). For a vertex u of G and a subset S of V (G), the distance between u and S is the number mins∈Sd(u, s). A k-partition Π = {S1, S2, …, Sk} of V (G) is called a resolving partition if for every two distinct vertices u, v ∈ V (G) there is a set Si in Π such that d(u, Si) ≠ d(v, Si). The minimum k for which there is a resolving k-partition of V (G) is called the partition dimension of G, denoted by pd(G). The circulant graph is a graph with vertex set ℤn, an additive group of integers modulo n, and two vertices labeled i and j adjacent if and only if i − j (mod n) ∈ C, where C ∈ ℤn has the property that C = −C and 0 ∉ C. The circulant graph is denoted by Xn,Δ where Δ = |C|. In this paper, we study the metric dimension of a family of circulant graphs Xn,3 with connection set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C = \left\{ {1,\tfrac{n} {2},n - 1} \right\}$$\end{document} and prove that dim(Xn,3) is independent of choice of n by showing that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim \left( {X_{n,3} } \right) = \left\{ \begin{gathered} 3 for all n \equiv 0 (mod 4), \hfill \\ 4 for all n \equiv 2 (mod 4). \hfill \\ \end{gathered} \right.$$\end{document} We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C = {±1,±2} and prove that pd(Xn,4) is independent of choice of n and show that pd(X5,4) = 5 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pd\left( {X_{n,4} } \right) = \left\{ \begin{gathered} 3 for all odd n \geqslant 9, \hfill \\ 4 for all even n \geqslant 6 and n = 7. \hfill \\ \end{gathered} \right.$$\end{document}.
引用
收藏
页码:1851 / 1864
页数:13
相关论文
共 50 条
  • [31] On the metric dimension of circulant graphs
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, Syed Ahtsham Ul Haq
    Javaid, Imran
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 320 - 325
  • [32] The Metric Dimension of Circulant Graphs
    Vetrik, Tomas
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 206 - 216
  • [33] The irregularity strength of circulant graphs
    Baril, JL
    Kheddouci, H
    Togni, O
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 1 - 10
  • [34] 4-circulant graphs
    Davis, GJ
    Domke, GS
    Garner, CR
    ARS COMBINATORIA, 2002, 65 : 97 - 110
  • [35] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 84 (03) : 173 - 173
  • [36] On the metric dimension of circulant graphs
    Gao, Rui
    Xiao, Yingqing
    Zhang, Zhanqi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 328 - 337
  • [37] Star extremal circulant graphs
    Lih, KW
    Liu, DDF
    Zhu, XD
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (04) : 491 - 499
  • [38] THE METRIC DIMENSION OF CIRCULANT GRAPHS
    Tapendra, B. C.
    Dueck, Shonda
    OPUSCULA MATHEMATICA, 2025, 45 (01) : 39 - 51
  • [39] COMBINATORIAL REFINEMENT ON CIRCULANT GRAPHS
    Kluge, Laurence
    COMPUTATIONAL COMPLEXITY, 2024, 33 (02)
  • [40] On the Partition Dimension of Circulant Graphs
    Grigorious, Cyriac
    Stephen, Sudeep
    Rajan, Bharati
    Miller, Mirka
    COMPUTER JOURNAL, 2017, 60 (02): : 180 - 184