Scaling of cylinder-generated shock-wave/turbulent boundary-layer interactions

被引:0
|
作者
S. A. Lindörfer
C. S. Combs
P. A. Kreth
R. B. Bond
J. D. Schmisseur
机构
[1] The University of Tennessee Space Institute,
[2] The University of Texas at San Antonio,undefined
来源
Shock Waves | 2020年 / 30卷
关键词
SWBLI; SBLI; Scaling; Cylinder; Fin; Blunt;
D O I
暂无
中图分类号
学科分类号
摘要
Scaling parameters of shock-wave/turbulent boundary-layer interactions generated by a semi-infinite standing cylinder were explored in a combined numerical and experimental effort, consisting of Reynolds-averaged Navier–Stokes simulations and high-speed schlieren imaging. The primary interaction variable, the cylinder diameter (d), and a secondary interaction variable, the boundary-layer thickness (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}), were varied to study the effects of the parameter d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document}. This was found to be an appropriate scaling parameter for mean features. The characteristic interaction variables (the maximum separation distance, S, and the triple-point height, htp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_\mathrm{tp}$$\end{document}) followed a linear trend when normalized as S/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S/\delta $$\end{document} and htp/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_\mathrm{tp}/\delta $$\end{document}; however, when the boundary layer became larger than the cylinder diameter, a power law trend became more representative. The parameter d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document} also determined the role that viscous effects have on the strength of the interaction, where a lower d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document} was characterized by a greater interaction scale and lower surface pressure peaks. Moreover, the high surface pressure on the cylinder leading edge due to the Edney interaction was found to be reduced for d/δ≤0.45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta \le 0.45$$\end{document}, as the boundary layer encompassed the lambda-shock structure. Trends in the shapes or peaks of the auto-spectral density function were not observed based on d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document}, but appeared to be dominated by broadband low-frequency (f<1kHz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f < 1~\hbox {kHz}$$\end{document}) content. While the position and structure of the interaction may change as a result of varying d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document}, the effects on the unsteady dynamics were minimal.
引用
收藏
页码:395 / 407
页数:12
相关论文
共 50 条