Scaling of cylinder-generated shock-wave/turbulent boundary-layer interactions

被引:0
|
作者
S. A. Lindörfer
C. S. Combs
P. A. Kreth
R. B. Bond
J. D. Schmisseur
机构
[1] The University of Tennessee Space Institute,
[2] The University of Texas at San Antonio,undefined
来源
Shock Waves | 2020年 / 30卷
关键词
SWBLI; SBLI; Scaling; Cylinder; Fin; Blunt;
D O I
暂无
中图分类号
学科分类号
摘要
Scaling parameters of shock-wave/turbulent boundary-layer interactions generated by a semi-infinite standing cylinder were explored in a combined numerical and experimental effort, consisting of Reynolds-averaged Navier–Stokes simulations and high-speed schlieren imaging. The primary interaction variable, the cylinder diameter (d), and a secondary interaction variable, the boundary-layer thickness (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}), were varied to study the effects of the parameter d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document}. This was found to be an appropriate scaling parameter for mean features. The characteristic interaction variables (the maximum separation distance, S, and the triple-point height, htp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_\mathrm{tp}$$\end{document}) followed a linear trend when normalized as S/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S/\delta $$\end{document} and htp/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_\mathrm{tp}/\delta $$\end{document}; however, when the boundary layer became larger than the cylinder diameter, a power law trend became more representative. The parameter d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document} also determined the role that viscous effects have on the strength of the interaction, where a lower d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document} was characterized by a greater interaction scale and lower surface pressure peaks. Moreover, the high surface pressure on the cylinder leading edge due to the Edney interaction was found to be reduced for d/δ≤0.45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta \le 0.45$$\end{document}, as the boundary layer encompassed the lambda-shock structure. Trends in the shapes or peaks of the auto-spectral density function were not observed based on d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document}, but appeared to be dominated by broadband low-frequency (f<1kHz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f < 1~\hbox {kHz}$$\end{document}) content. While the position and structure of the interaction may change as a result of varying d/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/\delta $$\end{document}, the effects on the unsteady dynamics were minimal.
引用
收藏
页码:395 / 407
页数:12
相关论文
共 50 条
  • [1] Scaling of cylinder-generated shock-wave/turbulent boundary-layer interactions
    Lindorfer, S. A.
    Combs, C. S.
    Kreth, P. A.
    Bond, R. B.
    Schmisseur, J. D.
    SHOCK WAVES, 2020, 30 (04) : 395 - 407
  • [2] A scaling analysis for turbulent shock-wave/boundary-layer interactions
    Souverein, L. J.
    Bakker, P. G.
    Dupont, P.
    JOURNAL OF FLUID MECHANICS, 2013, 714 : 505 - 535
  • [3] SHOCK-WAVE TURBULENT BOUNDARY-LAYER INTERACTIONS INDUCED BY A SEMICONE
    SAIDA, N
    OOKA, T
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 1987, 30 (89) : 173 - 185
  • [4] MULTIPLE NORMAL SHOCK-WAVE TURBULENT BOUNDARY-LAYER INTERACTIONS
    CARROLL, BF
    DUTTON, JC
    JOURNAL OF PROPULSION AND POWER, 1992, 8 (02) : 441 - 448
  • [5] SIMILARITY OF QUASICONICAL SHOCK-WAVE TURBULENT BOUNDARY-LAYER INTERACTIONS
    SETTLES, GS
    KIMMEL, RL
    AIAA JOURNAL, 1986, 24 (01) : 47 - 53
  • [6] Prediction of hypersonic shock-wave/turbulent boundary-layer interactions
    Smith, BR
    JOURNAL OF SPACECRAFT AND ROCKETS, 1996, 33 (05) : 614 - 619
  • [7] Shock-wave/turbulent boundary-layer interactions in nonequilibrium flows
    Grasso, F
    Marini, M
    Ranuzzi, G
    Cuttica, S
    Chanetz, B
    AIAA JOURNAL, 2001, 39 (11) : 2131 - 2140
  • [8] Shock-wave/turbulent boundary-layer interactions in nonequilibrium flows
    Grasso, F.
    Marini, M.
    Chanetz, B.
    1600, American Inst. Aeronautics and Astronautics Inc. (39):
  • [9] ON THE MECHANISM OF UNSTEADY SHOCK OSCILLATION IN SHOCK-WAVE TURBULENT BOUNDARY-LAYER INTERACTIONS
    THOMAS, FO
    PUTNAM, CM
    CHU, HC
    EXPERIMENTS IN FLUIDS, 1994, 18 (1-2) : 69 - 81
  • [10] Reynolds number effects in shock-wave/turbulent boundary-layer interactions
    Laguarda, L.
    Hickel, S.
    Schrijer, F. F. J.
    van Oudheusden, B. W.
    JOURNAL OF FLUID MECHANICS, 2024, 989