Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization

被引:0
|
作者
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
机构
[1] Institut de Mathématiques de Toulouse (UMR 5219),Institut de Mathématiques de Toulouse (UMR 5219)
[2] CNRS,undefined
[3] Artificial and Natural Intelligence Toulouse Institute (ANITI),undefined
[4] Institut de Recherche Technologique (IRT) Saint Exupéry,undefined
[5] Université de Toulouse,undefined
关键词
Shape recognition; Algorithmic bias; Image Classification; Neural-networks; Regularization;
D O I
暂无
中图分类号
学科分类号
摘要
The increasingly common use of neural network classifiers in industrial and social applications of image analysis has allowed impressive progress these last years. Such methods are, however, sensitive to algorithmic bias, i.e., to an under- or an over-representation of positive predictions or to higher prediction errors in specific subgroups of images. We then introduce in this paper a new method to temper the algorithmic bias in Neural-Network-based classifiers. Our method is Neural-Network architecture agnostic and scales well to massive training sets of images. It indeed only overloads the loss function with a Wasserstein-2-based regularization term for which we back-propagate the impact of specific output predictions using a new model, based on the Gâteaux derivatives of the predictions distribution. This model is algorithmically reasonable and makes it possible to use our regularized loss with standard stochastic gradient-descent strategies. Its good behavior is assessed on the reference Adult census, MNIST, CelebA datasets.
引用
收藏
页码:672 / 689
页数:17
相关论文
共 50 条
  • [31] Bias regularization in neural network models for general insurance pricing
    Mario V. Wüthrich
    European Actuarial Journal, 2020, 10 : 179 - 202
  • [32] Bias regularization in neural network models for general insurance pricing
    Wuthrich, Mario V.
    EUROPEAN ACTUARIAL JOURNAL, 2020, 10 (01) : 179 - 202
  • [33] Bias-regularised Neural-Network Metamodelling of Insurance Portfolio Risk
    Luo, Wei
    Mashrur, Akib
    Robles-Kelly, Antonio
    Li, Gang
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [34] CLASSIFICATION OF CHROMOSOMES USING A PROBABILISTIC NEURAL-NETWORK
    SWEENEY, WP
    MUSAVI, MT
    GUIDI, JN
    CYTOMETRY, 1994, 16 (01): : 17 - 24
  • [35] Variable selection using neural-network models
    Castellano, G
    Fanelli, AM
    NEUROCOMPUTING, 2000, 31 (1-4) : 1 - 13
  • [36] NEURAL-NETWORK DESIGN USING VORONOI DIAGRAMS
    BOSE, NK
    GARGA, AK
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (05): : 778 - 787
  • [37] ACTIVE CONTROL OF VIBRATION USING A NEURAL-NETWORK
    SNYDER, SD
    TANAKA, N
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (04): : 819 - 828
  • [38] APPROXIMATION OF CHAOTIC BEHAVIOR BY USING NEURAL-NETWORK
    NAGAYAMA, I
    AKAMATSU, N
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1994, E77D (04) : 450 - 458
  • [39] ENDOCARDIAL BOUNDARY DETECTION USING A NEURAL-NETWORK
    TSAI, CT
    SUN, YN
    CHUNG, PC
    LEE, JS
    PATTERN RECOGNITION, 1993, 26 (07) : 1057 - 1068
  • [40] CONTROL OF BIOREACTORS USING A NEURAL-NETWORK MODEL
    MURALIKRISHNAN, G
    CHIDAMBARAM, M
    BIOPROCESS ENGINEERING, 1995, 12 (1-2): : 35 - 39