On forms, cohomology and BV Laplacians in odd symplectic geometry

被引:0
|
作者
R. Catenacci
C. A. Cremonini
P. A. Grassi
S. Noja
机构
[1] Università del Piemonte Orientale,Dipartimento di Scienze e Innovazione Tecnologica
[2] Università degli Studi dell’Insubria,Dipartimento di Scienze e Alta Tecnologia
[3] Universität Heidelberg,Mathematisches Institut
[4] Gruppo Nazionale di Fisica Matematica,Gruppo Nazionale per le Strutture Algebriche
[5] InDAM,undefined
[6] Geometriche e le loro Applicazioni,undefined
[7] InDAM,undefined
[8] Arnold Regge Center,undefined
[9] INFN Sezione di Torino,undefined
[10] INFN,undefined
[11] Sezione di Milano,undefined
来源
关键词
Supermanifold; Odd symplectic form; BV Laplacian; Deformed de Rham complex; 58A50; 81T70;
D O I
暂无
中图分类号
学科分类号
摘要
We study the cohomology of the complexes of differential, integral and a particular class of pseudo-forms on odd symplectic manifolds taking the wedge product with the symplectic form as a differential. We thus extend the result of Ševera and the related results of Khudaverdian–Voronov on interpreting the BV odd Laplacian acting on half-densities on an odd symplectic supermanifold. We show that the cohomology classes are in correspondence with inequivalent Lagrangian submanifolds and that they all define semidensities on them. Further, we introduce new operators that move from one Lagragian submanifold to another and we investigate their relation with the so-called picture changing operators for the de Rham differential. Finally, we prove the isomorphism between the cohomology of the de Rham differential and the cohomology of BV Laplacian in the extended framework of differential, integral and a particular class of pseudo-forms.
引用
收藏
相关论文
共 50 条