A Double Tiling of Triangles and Regular Hexagons

被引:0
|
作者
H. Okumura
J. F. Rigby
机构
[1] Maebashi Institute of Technology,
[2] 460 Kamisadori,undefined
[3] Maebashi,undefined
[4] Gunma 371,undefined
[5] Japan okumura@maebashi-it.ac.jp ,undefined
[6] School of Mathematics,undefined
[7] Cardiff University,undefined
[8] Senghennydd Road,undefined
[9] Cardiff CF2 4YH,undefined
[10] Wales rigby@cardiff.ac.uk [-20pt],undefined
来源
关键词
Complex Number; Focal Point; Regular Hexagon; Triangle Geometry; Double Tiling;
D O I
暂无
中图分类号
学科分类号
摘要
A tiling of triangles and regular hexagons, which wraps around a focal point and covers the plane twice, is investigated using both synthetic triangle geometry and complex numbers.
引用
收藏
页码:467 / 480
页数:13
相关论文
共 50 条
  • [1] A double tiling of triangles and regular hexagons
    Okumura, H
    Rigby, JF
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (2-3) : 467 - 479
  • [2] Tiling the Plane with Different Hexagons and Triangles
    Panzone, Pablo A.
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (06): : 583 - 591
  • [3] TILING OF REGULAR POLYGONS WITH SIMILAR RIGHT TRIANGLES
    Laczkovich, Miklos
    Vasenov, Ivan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 153 - 155
  • [4] Tiling Generating Functions of Halved Hexagons and Quartered Hexagons
    Lai, Tri
    Rohatgi, Ranjan
    ANNALS OF COMBINATORICS, 2021, 25 (02) : 471 - 493
  • [5] Tiling Generating Functions of Halved Hexagons and Quartered Hexagons
    Tri Lai
    Ranjan Rohatgi
    Annals of Combinatorics, 2021, 25 : 471 - 493
  • [6] A TILING OF THE PLANE WITH TRIANGLES
    MIELKE, PT
    TWO-YEAR COLLEGE MATHEMATICS JOURNAL, 1983, 14 (05): : 377 - 381
  • [7] Tiling a strip with triangles
    Bodeen, John
    Butler, Steve
    Kim, Taekyoung
    Sun, Xiyuan
    Wang, Shenzhi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [8] TILING THE SQUARE WITH RATIONAL TRIANGLES
    GUY, RK
    NUMBER THEORY AND APPLICATIONS, 1989, 265 : 45 - 101
  • [9] A SELF-SIMILAR DODECAGONAL QUASIPERIODIC TILING OF THE PLANE IN TERMS OF SQUARES, REGULAR HEXAGONS AND THIN RHOMBI
    NIIZEKI, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : 2167 - 2175
  • [10] Regular spatial hexagons
    Siegerist, Fritz
    Wirth, Karl
    ELEMENTE DER MATHEMATIK, 2022, 77 (01) : 1 - 19