NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation

被引:0
|
作者
Jingzheng Li
Hailong Sun
机构
[1] Beihang University,SKLSDE Lab, School of Computer Science and Engineering
[2] Beihang University,SKLSDE Lab, School of Software
[3] Beijing Advanced Innovation Center for Big Data and Brain Computing,undefined
来源
Machine Learning | 2023年 / 112卷
关键词
Domain adaptation; Contrastive learning; Clustering;
D O I
暂无
中图分类号
学科分类号
摘要
The Unsupervised Domain Adaptation (UDA) methods aim to enhance feature transferability possibly at the expense of feature discriminability. Recently, contrastive representation learning has been applied to UDA as a promising approach. One way is to combine the mainstream domain adaptation method with contrastive self-supervised tasks. The other way uses contrastive learning to align class-conditional distributions according to the semantic structure information of source and target domains. Nevertheless, there are some limitations in two aspects. One is that optimal solutions for the contrastive self-supervised learning and the domain discrepancy minimization may not be consistent. The other is that contrastive learning uses pseudo label information of target domain to align class-conditional distributions, where the pseudo label information contains noise such that false positive and negative pairs would deteriorate the performance of contrastive learning. To address these issues, we propose Noise-robust cross-domain Contrastive Learning (NaCL) to directly realize the domain adaptation task via simultaneously learning the instance-wise discrimination and encoding semantic structures in intra- and inter-domain to the learned representation space. More specifically, we adopt topology-based selection on the target domain to detect and remove false positive and negative pairs in contrastive loss. Theoretically, we demonstrate that not only NaCL can be considered an example of Expectation Maximization (EM), but also accurate pseudo label information is beneficial for reducing the expected error on target domain. NaCL obtains superior results on three public benchmarks. Further, NaCL can also be applied to semi-supervised domain adaptation with only minor modifications, achieving advanced diagnostic performance on COVID-19 dataset. Code is available at https://github.com/jingzhengli/NaCL
引用
收藏
页码:3473 / 3496
页数:23
相关论文
共 50 条
  • [21] Discriminative Extreme Learning Machine with Cross-Domain Mean Approximation for Unsupervised Domain Adaptation
    Zang, Shaofei
    Li, Xinghai
    Ma, Jianwei
    Yan, Yongyi
    Lv, Jinfeng
    Wei, Yuan
    COMPLEXITY, 2022, 2022
  • [22] ACDC: Online unsupervised cross-domain adaptation
    de Carvalho, Marcus
    Pratama, Mahardhika
    Zhang, Jie
    Yee, Edward Yapp Kien
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [23] Hierarchical contrastive adaptation for cross-domain object detection
    Deng, Ziwei
    Kong, Quan
    Akira, Naoto
    Yoshinaga, Tomoaki
    MACHINE VISION AND APPLICATIONS, 2022, 33 (04)
  • [24] Hierarchical contrastive adaptation for cross-domain object detection
    Ziwei Deng
    Quan Kong
    Naoto Akira
    Tomoaki Yoshinaga
    Machine Vision and Applications, 2022, 33
  • [25] Unsupervised domain adaptation by cross-domain consistency learning for CT body compositionUnsupervised domain adaptation by cross-domain consistency learning for CT body compositionS. Ali et al.
    Shahzad Ali
    Yu Rim Lee
    Soo Young Park
    Won Young Tak
    Soon Ki Jung
    Machine Vision and Applications, 2025, 36 (1)
  • [26] Cross-domain Network Traffic Classification Using Unsupervised Domain Adaptation
    Li, Dongpu
    Yuan, Qifeng
    Li, Tan
    Chen, Shuangwu
    Yang, Jian
    2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 245 - +
  • [27] Cross-Domain Attention Network for Unsupervised Domain Adaptation Crowd Counting
    Zhang, Anran
    Xu, Jun
    Luo, Xiaoyan
    Cao, Xianbin
    Zhen, Xiantong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6686 - 6699
  • [28] Cross-Domain Extreme Learning Machines for Domain Adaptation
    Li, Shuang
    Song, Shiji
    Huang, Gao
    Wu, Cheng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (06): : 1194 - 1207
  • [29] Learning Cross-Domain Landmarks for Heterogeneous Domain Adaptation
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5081 - 5090
  • [30] Unsupervised Domain Adaptation with Contrastive Learning for OCT Segmentation
    Gomariz, Alvaro
    Lu, Huanxiang
    Li, Yun Yvonna
    Albrecht, Thomas
    Maunz, Andreas
    Benmansour, Fethallah
    Valcarcel, Alessandra M.
    Luu, Jennifer
    Ferrara, Daniela
    Goksel, Orcun
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 351 - 361