This paper is concerned with the ordinary differential equation
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{f}\ifmmode{'}\else$'$\fi}\ifmmode{'}\else$'$\fi}\ifmmode{'}\else$'$\fi + mf\,{{f}\ifmmode{'}\else$'$\fi}\ifmmode{'}\else$'$\fi - \alpha {f}\ifmmode{'}\else$'$\fi^{2} = 0,$$\end{document} on (0, + ∞), subject to the boundary conditions
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(0) = a,\quad {f}\ifmmode{'}\else$'$\fi(0) = b,\quad {f}\ifmmode{'}\else$'$\fi(\infty ) = {\mathop {\lim }\limits_{t \to \infty } }{f}\ifmmode{'}\else$'$\fi(t) = 0,$$\end{document} in which a and b are reals, m > 0 and α < 0. Such problem, with
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m = \frac{{\alpha + 1}}{2},\;a = 0\;{\text{ and }}\;b = 1,$$\end{document} arises in the study of the free convection, along a vertical flat plate embedded in a porous medium.