Similarity solutions of differential equations for boundary layer approximations in porous media

被引:0
|
作者
M. Guedda
机构
[1] Université de Picardie Jules Verne,Lamfa, CNRS UMR 6140, Faculté de Mathématiques et d’Informatique
关键词
34B15; 34B60; 76D10; Boundary layer; porous media; similarity solutions; existence; blowing up solutions; non-uniqueness; Blasius equation; asymptotic behaviour;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the ordinary differential equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{f}\ifmmode{'}\else$'$\fi}\ifmmode{'}\else$'$\fi}\ifmmode{'}\else$'$\fi + mf\,{{f}\ifmmode{'}\else$'$\fi}\ifmmode{'}\else$'$\fi - \alpha {f}\ifmmode{'}\else$'$\fi^{2} = 0,$$\end{document} on (0, + ∞), subject to the boundary conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0) = a,\quad {f}\ifmmode{'}\else$'$\fi(0) = b,\quad {f}\ifmmode{'}\else$'$\fi(\infty ) = {\mathop {\lim }\limits_{t \to \infty } }{f}\ifmmode{'}\else$'$\fi(t) = 0,$$\end{document} in which a and b are reals, m > 0 and α < 0. Such problem, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = \frac{{\alpha + 1}}{2},\;a = 0\;{\text{ and }}\;b = 1,$$\end{document} arises in the study of the free convection, along a vertical flat plate embedded in a porous medium.
引用
收藏
页码:749 / 762
页数:13
相关论文
共 50 条
  • [1] Similarity solutions of differential equations for boundary layer approximations in porous media
    Guedda, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (05): : 749 - 762
  • [2] Nonuniqueness of solutions to differential equations for boundary-layer approximations in porous media
    Guedda, M
    COMPTES RENDUS MECANIQUE, 2002, 330 (04): : 279 - 283
  • [3] On a family of differential equations for boundary layer approximations in porous media
    Belhachmi, Z
    Brighi, B
    Taous, K
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 : 513 - 528
  • [4] Similarity solutions for a boundary layer problem in porous media
    Belhachmi, Z
    Brighi, B
    Taous, K
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (05): : 407 - 410
  • [5] Similarity Solutions of the MHD Boundary Layer Flow Past a Constant Wedge within Porous Media
    Kudenatti, Ramesh B.
    Kirsur, Shreenivas R.
    Nargund, Achala L.
    Bujurke, N. M.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [6] ON SIMILARITY SOLUTIONS OF BOUNDARY-LAYER EQUATIONS WITH ALGEBRAIC DECAY
    BROWN, SN
    STEWARTS.K
    JOURNAL OF FLUID MECHANICS, 1965, 23 : 673 - &
  • [7] SIMILARITY SOLUTIONS OF THE BOUNDARY-LAYER EQUATIONS FOR A STRETCHING WALL
    BANKS, WHH
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, 2 (03): : 375 - 392
  • [8] Similarity solutions of the boundary layer equations for a nonlinearly stretching sheet
    Akyildiz, F. Talay
    Siginer, Dennis A.
    Vajravelu, K.
    Cannon, J. R.
    Van Gorder, Robert A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (05) : 601 - 606
  • [9] LOCAL SIMILARITY SOLUTIONS FOR THE COMPRESSIBLE LAMINAR BOUNDARY LAYER EQUATIONS.
    Nath, G.
    Acta Technica (Budapest), 1974, 79 (1-2): : 225 - 238
  • [10] SIMILARITY SOLUTIONS OF THE UNSTEADY BOUNDARY-LAYER EQUATIONS FOR A MOVING WALL
    DEVI, CDS
    NATH, G
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (12): : 1405 - 1411