Fast Preconditioned Iterative Methods for Convolution-Type Integral Equations

被引:0
|
作者
Fu-Rong Lin
Michael K. Ng
机构
[1] Shantou University,Department of Mathematics
[2] University of Hong Kong,Department of Mathematics
来源
BIT Numerical Mathematics | 2000年 / 40卷
关键词
Fredholm equations; displacement kernel; Toeplitz matrices; quadrature rules;
D O I
暂无
中图分类号
学科分类号
摘要
We consider solving the Fredholm integral equation of the second kind with the piecewise smooth displacement kernel x(t) + ∑j=1m µjx(t − tj) + ∫0τk(t − s)x(s) ds = g(t), 0 ≤ t ≤ τ, where tj ∈ (−τ, τ), for 1 ≤ j ≤ m. The direct application of the quadrature rule to the above integral equation leads to a non-Toeplitz and an underdetermined matrix system. The aim of this paper is to propose a numerical scheme to approximate the integral equation such that the discretization matrix system is the sum of a Toeplitz matrix and a matrix of rank two. We apply the preconditioned conjugate gradient method with Toeplitz-like matrices as preconditioners to solve the resulting discretization system. Numerical examples are given to illustrate the fast convergence of the PCG method and the accuracy of the computed solutions.
引用
收藏
页码:336 / 350
页数:14
相关论文
共 50 条
  • [21] Nonlinear convolution-type equations in Lebesgue spaces
    Askhabov, S. N.
    MATHEMATICAL NOTES, 2015, 97 (5-6) : 659 - 668
  • [22] Nonlinear convolution-type equations in Lebesgue spaces
    S. N. Askhabov
    Mathematical Notes, 2015, 97 : 659 - 668
  • [23] On preconditioned iterative methods for Burgers equations
    Bai, Zhong-Zhi
    Huang, Yu-Mei
    Ng, Michael K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01): : 415 - 439
  • [24] Performance of preconditioned Krylov iterative methods for solving hybrid integral equations in electromagnetics
    Lee, JH
    Zhang, J
    Lu, CC
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2003, : 54 - 61
  • [25] Stochastic convolution-type heat equations with nonlinear drift
    Erraoui, Mohamed
    Ouerdiane, Habib
    da Silva, Jose Luis
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (01) : 237 - 254
  • [26] CONVOLUTION-TYPE EQUATIONS WITH SCALENE POWER KERNEL DECREASE
    KOMARNITSKII, AL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (09): : 83 - 85
  • [27] SOME 2-DIMENSIONAL INTEGRAL CONVOLUTION-TYPE TRANSFORMATIONS
    NGUEN, TH
    YAKUBOVICH, SB
    DOKLADY AKADEMII NAUK BELARUSI, 1990, 34 (05): : 396 - 398
  • [28] CONVOLUTION-TYPE INTEGRAL-EQUATIONS IN BOUNDARY-VALUE-PROBLEMS OF THE KINETIC-THEORY OF GASES
    LATYSHEV, AV
    MANUCHARIAN, GA
    IALAMOV, II
    DOKLADY AKADEMII NAUK SSSR, 1985, 284 (02): : 331 - 333
  • [29] CONVOLUTION-TYPE EQUATIONS IN THE ANTENNA-ARRAY THEORY (REVIEW)
    CHAPLIN, AF
    KHZMALYAN, AD
    RADIOTEKHNIKA I ELEKTRONIKA, 1991, 36 (02): : 225 - 238
  • [30] Iterative methods for a class of convolution equations
    I. V. Boikov
    A. I. Boikova
    Differential Equations, 2010, 46 : 1322 - 1329