Online Coloring a Token Graph

被引:0
|
作者
Kevin G. Milans
Michael C. Wigal
机构
[1] West Virginia University,
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Combinatorial game; Online coloring; Graph coloring;
D O I
暂无
中图分类号
学科分类号
摘要
We study a combinatorial coloring game between two players, Spoiler and Painter, who alternate turns. First, Spoiler places a new token at a vertex in G, and Painter responds by assigning a color to the new token. Painter must ensure that tokens on the same or adjacent vertices receive distinct colors. Spoiler must ensure that the token graph (in which two tokens are adjacent if and only if their distance in G is at most 1) has chromatic number at most w. Painter wants to minimize the number of colors used, and Spoiler wants to force as many colors as possible. Let f(w,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w,G)$$\end{document} be the minimum number of colors needed in an optimal Painter strategy. The game is motivated by a natural online coloring problem on the real line which remains open. A graph G is token-perfect if f(w,G)=w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w,G) = w$$\end{document} for each w. We show that a graph is token-perfect if and only if it can be obtained from a bipartite graph by cloning vertices. We also give a forbidden induced subgraph characterization of the class of token-perfect graphs, which may be of independent interest. When G is not token-perfect, determining f(w,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w,G)$$\end{document} seems challenging; we establish f(w,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w,G)$$\end{document} asymptotically for some of the minimal graphs that are not token-perfect.
引用
收藏
页码:153 / 165
页数:12
相关论文
共 50 条
  • [41] Graph coloring with rejection
    Epstein, Leah
    Levin, Asaf
    Woeginger, Gerhard J.
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 364 - 375
  • [42] Graph coloring manifolds
    Csorba, Peter
    Lutz, Frank H.
    ALGEBRAIC AND GEOMETRIC COMBINATORICS, 2006, 423 : 51 - 69
  • [43] Uniform Coloring of Graph
    Berlov S.L.
    Journal of Mathematical Sciences, 2014, 196 (6) : 733 - 736
  • [44] Strategic Coloring of a Graph
    Escoffier, Bruno
    Gourves, Laurent
    Monnot, Jerome
    INTERNET MATHEMATICS, 2012, 8 (04) : 424 - 455
  • [45] Oriented graph coloring
    Sopena, E
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 359 - 369
  • [46] A graph coloring problem
    Yu. A. Zuev
    Mathematical Notes, 2015, 97 : 965 - 967
  • [47] NOTE ON GRAPH COLORING
    DEWERRA, D
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1974, (NR1): : 49 - 53
  • [48] A graph coloring problem
    Zuev, Yu. A.
    MATHEMATICAL NOTES, 2015, 97 (5-6) : 965 - 967
  • [49] When the vertex coloring of a graph is an edge coloring of its line graph - a rare coincidence
    Bujtas, Csilla
    Sampathkumar, E.
    Tuza, Zsolt
    Dominic, Charles
    Pushpalatha, L.
    ARS COMBINATORIA, 2016, 128 : 165 - 173
  • [50] Online hypergraph coloring
    Nagy-Gyorgy, J.
    Imreh, Cs.
    INFORMATION PROCESSING LETTERS, 2008, 109 (01) : 23 - 26