Fragmentation of charm to charmonium in e+e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{e}}}^+{{\varvec{e}}}^-$$\end{document} and pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{pp}}}$$\end{document} collisions

被引:0
|
作者
S. P. Baranov
B. Z. Kopeliovich
机构
[1] P.N. Lebedev Institute of Physics,Departamento de Física
[2] Universidad Técnica Federico Santa María,undefined
[3] Centro Científico-Tecnológico de Valparaíso,undefined
来源
The European Physical Journal C | 2019年 / 79卷 / 3期
关键词
D O I
10.1140/epjc/s10052-019-6700-0
中图分类号
学科分类号
摘要
We perform numerical comparison of the fragmentation mechanism of charmonium production (gg→cc¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\,g\rightarrow c\,{\bar{c}}$$\end{document} followed by c→ψc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\rightarrow \psi \,c$$\end{document}) with the full leading order calculation (gg→ψcc¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\,g\rightarrow \psi \,c\,{\bar{c}}$$\end{document} at O(αs4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(\alpha _s^4)$$\end{document}). We conclude that the non-fragmentation contributions remain important up to J/ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J/\psi $$\end{document} transverse momenta about as large as 40 GeV, thus making questionable the applicability of the fragmentation approximation at smaller transverse momenta.
引用
收藏
相关论文
共 50 条