Challenges and solutions for high-efficiency quantum dot-based LEDs

被引:0
|
作者
Deniz Bozyigit
Vanessa Wood
机构
[1] ETH Zürich,
来源
MRS Bulletin | 2013年 / 38卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Colloidal quantum dots (QDs) hold great promise as electrically excited emitters in light-emitting diodes (LEDs) for solid-state lighting and display applications, as highlighted recently by the demonstration of a red-emitting QD-LED with efficiency on par with that of commercialized organic LED technologies. In the past five years, important advances have been made in the synthesis of QD materials, the understanding of QD physics, and the integration of QDs into solid-state devices. Insights from this progress can be leveraged to develop a set of guidelines to direct QD-LED innovation. This article reviews the fundamental causes of inefficiency in QD-LEDs understood to date and proposes potential solutions. In particular, we emphasize the challenge in developing QD emitters that exhibit high luminescent quantum yields in the combined presence of charge carriers and electric fields that appear during traditional LED operation. To address this challenge, we suggest possible QD chemistries and active layer designs as well as novel device architectures and modes of QD-LED operation. These recommendations serve as examples of the type of innovations needed to drive development and commercialization of high-performance QD-LEDs.
引用
收藏
页码:731 / 736
页数:5
相关论文
共 50 条
  • [31] Competitive hybridization in quantum dot-based nanodevices
    Beltako, Katawoura
    Cavassilas, Nicolas
    Michelini, Fabienne
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES V, 2016, 9743
  • [32] A quantum dot-based ratiometric pH sensor
    Jin, Takashi
    Sasaki, Akira
    Kinjo, Masataka
    Miyazaki, Jun
    CHEMICAL COMMUNICATIONS, 2010, 46 (14) : 2408 - 2410
  • [33] Quantum Dot-Based Terahertz Photoconductive Antennas
    Gorodetsky, Andrei
    Rafailov, Edik U.
    Leyman, Ross
    2014 INTERNATIONAL CONFERENCE LASER OPTICS, 2014,
  • [34] A Quantum Dot-Based FLIM Glucose Nanosensor
    Ripoll, Consuelo
    Orte, Angel
    Paniza, Lorena
    Jose Ruedas-Rama, Maria
    SENSORS, 2019, 19 (22)
  • [35] Transparency Engineering in Quantum Dot-Based Memories
    Arikan, Ismail Firat
    Cottet, Nathanael
    Nowozin, Tobias
    Bimberg, Dieter
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (13):
  • [36] Quantum dot-based cell motility assay
    Pellegrino, T
    Parak, WJ
    Boudreau, R
    Le Gros, MA
    Gerion, D
    Alivisatos, AP
    Larabell, CA
    DIFFERENTIATION, 2003, 71 (9-10) : 542 - 548
  • [37] Materials for Future Quantum Dot-Based Memories
    Nowozin, T.
    Bimberg, D.
    Daqrouq, K.
    Ajour, M. N.
    Awedh, M.
    JOURNAL OF NANOMATERIALS, 2013, 2013
  • [38] Preparation of quantum dot-based fluorescent labels
    Huang, Ning
    Yang, Xiaotun
    Zhang, Yong
    INTERNATIONAL JOURNAL OF NANOSCIENCE, VOL 4, NO 4, 2005, 4 (04): : 677 - 681
  • [39] Optimizing charge balance in carbon dot-based LEDs for enhanced performance
    Yu, Zhenzhen
    Liu, Zhenyang
    Chen, Mingjun
    Zhao, Jinxing
    Hao, Chaoqi
    Zhang, You
    Wang, Fenghe
    Dong, Guoyi
    Guan, Li
    Li, Xu
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (46) : 16280 - 16287
  • [40] Thermoelectric properties of Quantum Dot-based devices
    Talbo, V.
    Dollfus, P.
    Saint-Martin, J.
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2018,