MFNet: Multi-level fusion aware feature pyramid based multi-view stereo network for 3D reconstruction

被引:0
|
作者
Youcheng Cai
Lin Li
Dong Wang
Xiaoping Liu
机构
[1] Hefei University of Technology,The School of Computer Science and Information Engineering
[2] Ministry of Education,The Engineering Research Center of Safety Critical Industrial Measurement and Control Technology
来源
Applied Intelligence | 2023年 / 53卷
关键词
Multi-view stereo; Multi-level fusions; Feature pyramid; Group-wise correlation;
D O I
暂无
中图分类号
学科分类号
摘要
We present an efficient multi-view stereo (MVS) network for 3D reconstruction from multi-view images. While the existing state-of-the-art methods have achieved satisfactory results, the accuracy and scalability remain an open problem due to unreliable dense matching and memory-consuming cost volume regularization. To this end, we propose a multi-level fusion aware feature pyramid based multi-view stereo network (MFNet) for reliable depth inference. First, we adopt a coarse-to-fine strategy that achieves high-resolution depth estimation based on the coarse depth map. This strategy gradually narrows the depth search interval by using the prior information from the previous stage, which dramatically reduces memory consumption. Second, we conduct multi-level fusions to construct the feature pyramid such that the different level features receive information from each other, thus enabling rich multi-level feature representations. Finally, the group-wise correlation similarity measure is introduced to replace the variance-based approach used in previous works for cost volume construction, resulting in a lightweight and effective cost volume representation. Experimental results on the DTU, Tanks & Temples, and BlendedMVS benchmark datasets show that MFNet achieves better results than the state-of-the-art methods.
引用
收藏
页码:4289 / 4301
页数:12
相关论文
共 50 条
  • [21] Multi-view and Multi-level network for fault diagnosis accommodating feature transferability
    Lu, Na
    Cui, Zhiyan
    Hu, Huiyang
    Yin, Tao
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [22] Uanet: uncertainty-aware cost volume aggregation-based multi-view stereo for 3D reconstruction
    Lu, Ping
    Cai, Youcheng
    Yang, Jiale
    Wang, Dong
    Wu, Tingting
    VISUAL COMPUTER, 2024, : 4567 - 4580
  • [23] View Planning for Multi-View Stereo 3D Reconstruction Using an Autonomous Multicopter
    Korbinian Schmid
    Heiko Hirschmüller
    Andreas Dömel
    Iris Grixa
    Michael Suppa
    Gerd Hirzinger
    Journal of Intelligent & Robotic Systems, 2012, 65 : 309 - 323
  • [24] An attention-based and deep sparse priori cascade multi-view stereo network for 3D reconstruction
    Wang, Yadong
    Ran, Teng
    Liang, Yuan
    Zheng, Guoquan
    COMPUTERS & GRAPHICS-UK, 2023, 116 : 383 - 392
  • [25] View Planning for Multi-View Stereo 3D Reconstruction Using an Autonomous Multicopter
    Schmid, Korbinian
    Hirschmueller, Heiko
    Doemel, Andreas
    Grixa, Iris
    Suppa, Michael
    Hirzinger, Gerd
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2012, 65 (1-4) : 309 - 323
  • [26] Multi-Feature Fusion Based on Multi-View Feature and 3D Shape Feature for Non-Rigid 3D Model Retrieval
    Zeng, Hui
    Wang, Qi
    Liu, Jiwei
    IEEE ACCESS, 2019, 7 : 41584 - 41595
  • [27] INVESTIGATING SPHERICAL EPIPOLAR RECTIFICATION FOR MULTI-VIEW STEREO 3D RECONSTRUCTION
    Elhashash, M.
    Qin, R.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 47 - 52
  • [28] User-guided 3D reconstruction using multi-view stereo
    Rasmuson, Sverker
    Sintorn, Erik
    Assarsson, Ulf
    I3D 2020: ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, 2020,
  • [29] An Extension of PatchMatch Stereo for 3D Reconstruction from Multi-View Images
    Hiradate, Mutsuki
    Ito, Koichi
    Aoki, Takafumi
    Watanabe, Takafumi
    Unten, Hiroki
    PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, 2015, : 61 - 65
  • [30] Accurate stereo 3D point cloud generation suitable for multi-view stereo reconstruction
    Kordelas, Georgios A.
    Daras, Petros
    Klavdianos, Patrycia
    Izquierdo, Ebroul
    Zhang, Qianni
    2014 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING CONFERENCE, 2014, : 307 - 310