Bayesian Low-Rank and Sparse Nonlinear Representation for Manifold Clustering

被引:0
|
作者
Kewei Tang
Jie Zhang
Zhixun Su
Jiangxin Dong
机构
[1] Liaoning Normal University,School of Mathematics
[2] Dalian University of Technology,School of Mathematical Sciences
来源
Neural Processing Letters | 2016年 / 44卷
关键词
Bayes; Low-rank; Manifold; Nonlinear representation; Sparse;
D O I
暂无
中图分类号
学科分类号
摘要
Linear representation usually used by the optimization model about low-rankness and sparsity limits their applications to some extent. In this paper, we propose Bayesian low-rank and sparse nonlinear representation (BLSN) model exploiting nonlinear representation. Different from the optimization model, BLSN can be solved by traditional algorithm in Bayesian statistics easily without knowing the explicit mapping by kernel trick. Moreover, it can learn the parameters adaptively to choose the low-rank and sparse properties and also provides a way to enforce more properties on one quantity in a Bayesian model. Based on the observation that the data points drawn from a union of manifolds may gain more meaningful linear structure after a nonlinear mapping, we apply BLSN for manifold clustering. It can handle different problems by constructing various kernels. With respect to the case of linear manifold, known as subspace segmentation, we propose a kernel by the Veronese mapping. In addition, we also design the kernel matrices for the case of nonlinear manifold. Experimental results confirm the effectiveness and the potential of our model for manifold clustering.
引用
收藏
页码:719 / 733
页数:14
相关论文
共 50 条
  • [31] Low-rank sparse subspace clustering with a clean dictionary
    You, Cong-Zhe
    Shu, Zhen-Qiu
    Fan, Hong-Hui
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15
  • [32] Sparse and low-rank regularized deep subspace clustering
    Zhu, Wenjie
    Peng, Bo
    KNOWLEDGE-BASED SYSTEMS, 2020, 204
  • [33] Latent Space Sparse and Low-Rank Subspace Clustering
    Patel, Vishal M.
    Hien Van Nguyen
    Vidal, Rene
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (04) : 691 - 701
  • [34] Multidimensional Low-Rank Representation for Sparse Hyperspectral Unmixing
    Wu, Ling
    Huang, Jie
    Guo, Ming-Shuang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [35] Conformal and Low-Rank Sparse Representation for Image Restoration
    Li, Jianwei
    Chen, Xiaowu
    Zou, Dongqing
    Gao, Bo
    Teng, Wei
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 235 - 243
  • [36] Automatical Spike Sorting With Low-Rank and Sparse Representation
    Huang, Libo
    Gan, Lu
    Zeng, Yan
    Ling, Bingo Wing-Kuen
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (05) : 1677 - 1686
  • [37] Video Matting via Sparse and Low-Rank Representation
    Zou, Dongqing
    Chen, Xiaowu
    Cao, Guangying
    Wang, Xiaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1564 - 1572
  • [38] Action Recognition Using Low-Rank Sparse Representation
    Cheng, Shilei
    Gu, Song
    Ye, Maoquan
    Xie, Mei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (03) : 830 - 834
  • [39] SPIKE SORTING BASED ON LOW-RANK AND SPARSE REPRESENTATION
    Huang, Libo
    Ling, Bingo Wing-Kuen
    Zeng, Yan
    Gan, Lu
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [40] Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices
    Cai, T. Tony
    Zhang, Anru
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 122 - 132