Bayesian Low-Rank and Sparse Nonlinear Representation for Manifold Clustering

被引:0
|
作者
Kewei Tang
Jie Zhang
Zhixun Su
Jiangxin Dong
机构
[1] Liaoning Normal University,School of Mathematics
[2] Dalian University of Technology,School of Mathematical Sciences
来源
Neural Processing Letters | 2016年 / 44卷
关键词
Bayes; Low-rank; Manifold; Nonlinear representation; Sparse;
D O I
暂无
中图分类号
学科分类号
摘要
Linear representation usually used by the optimization model about low-rankness and sparsity limits their applications to some extent. In this paper, we propose Bayesian low-rank and sparse nonlinear representation (BLSN) model exploiting nonlinear representation. Different from the optimization model, BLSN can be solved by traditional algorithm in Bayesian statistics easily without knowing the explicit mapping by kernel trick. Moreover, it can learn the parameters adaptively to choose the low-rank and sparse properties and also provides a way to enforce more properties on one quantity in a Bayesian model. Based on the observation that the data points drawn from a union of manifolds may gain more meaningful linear structure after a nonlinear mapping, we apply BLSN for manifold clustering. It can handle different problems by constructing various kernels. With respect to the case of linear manifold, known as subspace segmentation, we propose a kernel by the Veronese mapping. In addition, we also design the kernel matrices for the case of nonlinear manifold. Experimental results confirm the effectiveness and the potential of our model for manifold clustering.
引用
收藏
页码:719 / 733
页数:14
相关论文
共 50 条
  • [1] Bayesian Low-Rank and Sparse Nonlinear Representation for Manifold Clustering
    Tang, Kewei
    Zhang, Jie
    Su, Zhixun
    Dong, Jiangxin
    NEURAL PROCESSING LETTERS, 2016, 44 (03) : 719 - 733
  • [2] A subspace clustering algorithm based on simultaneously sparse and low-rank representation
    Liu, Xiaolan
    Yi, Miao
    Han, Le
    Deng, Xue
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (01) : 621 - 633
  • [3] Low-rank and sparse matrices fitting algorithm for low-rank representation
    Zhao, Jianxi
    Zhao, Lina
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (02) : 407 - 425
  • [4] Robust subspace learning-based low-rank representation for manifold clustering
    Kewei Tang
    Zhixun Su
    Wei Jiang
    Jie Zhang
    Xiyan Sun
    Xiaonan Luo
    Neural Computing and Applications, 2019, 31 : 7921 - 7933
  • [5] Robust subspace learning-based low-rank representation for manifold clustering
    Tang, Kewei
    Su, Zhixun
    Jiang, Wei
    Zhang, Jie
    Sun, Xiyan
    Luo, Xiaonan
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 7921 - 7933
  • [6] Low-rank Representation with Adaptive Dimensionality Reduction via Manifold Optimization for Clustering
    Chen, Haoran
    Chen, Xu
    Tao, Hongwei
    Li, Zuhe
    Wang, Xiao
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (09)
  • [7] Online clustering via energy scoring based on low-rank and sparse representation
    Li, Xiaojie
    Lv, Jian Cheng
    Li, Lili
    ELECTRONICS LETTERS, 2014, 50 (25) : 1927 - 1928
  • [8] Adaptive Weighted Low-Rank Sparse Representation for Multi-View Clustering
    Khan, Mohammad Ahmar
    Khan, Ghufran Ahmad
    Khan, Jalaluddin
    Anwar, Taushif
    Ashraf, Zubair
    Atoum, Ibrahim A. A.
    Ahmad, Naved
    Shahid, Mohammad
    Ishrat, Mohammad
    Alghamdi, Abdulrahman Abdullah
    IEEE ACCESS, 2023, 11 : 60681 - 60692
  • [9] LOW-RANK AND SPARSE TENSOR REPRESENTATION FOR MULTI-VIEW SUBSPACE CLUSTERING
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Voronin, Viacheslav
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1534 - 1538
  • [10] SUBSPACE CLUSTERING AND FEATURE EXTRACTION BASED ON LATENT SPARSE LOW-RANK REPRESENTATION
    Zhao, Li-Na
    Ma, Fang
    Yang, Hong-Wei
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 95 - 100