Optically Driven Quantum Computing Devices Based on Semiconductor Quantum Dots

被引:0
|
作者
Xiaoqin Li
Duncan Steel
Daniel Gammon
L.J. Sham
机构
[1] The University of Michigan,FOCUS, Harrison M. Randall Laboratory of Physics
[2] Naval Research Laboratory,Department of Physics
[3] University of California,undefined
来源
关键词
Quantum computing; quantum entanglement; semiconductor quantum dots; ultrafast optical spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns optically driven quantum logic devices based on semiconductor quantum dots. It provides a brief review of recent theoretical and experimental progress towards building such devices and a description of a possible direction of further research. We consider both the exciton and the electron spin as a potential qubit. Quantum dot fabrication and single dot spectroscopy studies are briefly discussed followed by a description of experimental demonstrations of basic quantum logic operations. A scheme for a scalable quantum computer based on optical control of electron spins localized in quantum dots is described in detail. Important lessons as well as challenges for future research are summarized.
引用
收藏
页码:147 / 161
页数:14
相关论文
共 50 条
  • [41] Quantum light source devices of In(Ga)As semiconductor self-assembled quantum dots
    Xiaowu He
    Yifeng Song
    Ying Yu
    Ben Ma
    Zesheng Chen
    Xiangjun Shang
    Haiqiao Ni
    Baoquan Sun
    Xiuming Dou
    Hao Chen
    Hongyue Hao
    Tongtong Qi
    Shushan Huang
    Hanqing Liu
    Xiangbin Su
    Xinliang Su
    Yujun Shi
    Zhichuan Niu
    Journal of Semiconductors, 2019, 40 (07) : 35 - 45
  • [42] Quantum light source devices of In(Ga)As semiconductor self-assembled quantum dots
    He, Xiaowu
    Song, Yifeng
    Yu, Ying
    Ma, Ben
    Chen, Zesheng
    Shang, Xiangjun
    Ni, Haiqiao
    Sun, Baoquan
    Dou, Xiuming
    Chen, Hao
    Hao, Hongyue
    Qi, Tongtong
    Huang, Shushan
    Liu, Hanqing
    Su, Xiangbin
    Su, Xinliang
    Shi, Yujun
    Niu, Zhichuan
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (07)
  • [43] Optically active quantum dots
    Gerard, Valerie
    Govan, Joseph
    Loudon, Alexander
    Baranov, Alexander V.
    Fedorov, Anatoly V.
    Gun'ko, Yurii K.
    NANOPHOTONIC MATERIALS XII, 2015, 9545
  • [44] Integrating Classical Semiconductor Devices with Si/SiGe Quantum Dots
    Ward, Daniel R.
    Foote, Ryan H.
    Gamble, John King
    Savage, Donald E.
    Lagally, Max G.
    Coppersmith, S. N.
    Eriksson, Mark A.
    SIGE, GE, AND RELATED COMPOUNDS 6: MATERIALS, PROCESSING, AND DEVICES, 2014, 64 (06): : 915 - 922
  • [45] Semiconductor quantum dots devices:: Recent advances and application prospects
    Reithmaier, J. P.
    Somers, A.
    Kaiser, W.
    Deubert, S.
    Gerschuetz, F.
    Forchel, A.
    Parillaud, O.
    Krakowski, M.
    Alizon, R.
    Hadass, D.
    Bilenca, A.
    Dery, H.
    Mikhelashvili, V.
    Eisenstein, G.
    Gioannini, M.
    Montrosset, I.
    Berg, T. W.
    van der Poel, M.
    Mork, J.
    Tromborg, B.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (15): : 3981 - 3987
  • [46] Quantum computing with quantum dots on quantum linear supports
    Brown, KR
    Lidar, DA
    Whaley, KB
    PHYSICAL REVIEW A, 2002, 65 (01): : 19
  • [47] Spintronics and quantum dots for quantum computing and quantum communication
    Burkard, G
    Engel, HA
    Loss, D
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (9-11): : 965 - 986
  • [48] Spintronics, quantum computing, and quantum communication in quantum dots
    Burkard, G
    Engel, HA
    Loss, D
    FUNDAMENTALS OF QUANTUM INFORMATION: QUANTUM COMPUTATION, COMMUNICATIONS, DECOHERENCE AND ALL THAT, 2002, 587 : 241 - 265
  • [49] Spintronics and quantum dots for quantum computing and quantum communication
    Burkard, G
    Engel, HA
    Loss, D
    COMPLEXITY FROM MICROSCOPIC TO MACROSCOPIC SCALES: COHERENCE AND LARGE DEVIATIONS, 2002, 63 : 83 - 104
  • [50] Novel semiconductor lasers based on quantum dots
    Deppe, DG
    Shchekin, OB
    Mo, Q
    Chen, H
    Huang, Z
    2003 IEEE/LEOS INTERNATIONAL CONFERENCE ON OPTICAL MEMS, 2003, : 167 - 168