Approximability of the problem about a minimum-weight cycle cover of a graph

被引:0
|
作者
M. Yu. Khachai
E. D. Neznakhina
机构
[1] Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics, Ural Branch
[2] Ural Federal University,undefined
来源
Doklady Mathematics | 2015年 / 91卷
关键词
Travel Salesman Problem; Travel Salesman Problem; DOKLADY Mathematic; Hamiltonian Cycle; Polynomial Time Approximation Scheme;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:240 / 245
页数:5
相关论文
共 50 条
  • [41] Elastic Minimum-Weight Annular Plates.
    Aristov, M.V.
    Troitskii, V.A.
    Izvestiya Akademii Nauk, S.S.S.R., Mekhanika Tverdogo Tela, 1975, (03): : 172 - 176
  • [42] DESIGN OF DRILLING FACILITIES FOR MINIMUM-WEIGHT PLATFORMS
    BOYD, NG
    TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION B-APPLIED EARTH SCIENCE, 1986, 95 : B137 - B138
  • [43] A (4+ε)-Approximation for the Minimum-Weight Dominating Set Problem in Unit Disk Graphs
    Erlebach, Thomas
    Mihalak, Matus
    APPROXIMATION AND ONLINE ALGORITHMS, 2010, 5893 : 135 - +
  • [44] Approximating minimum-weight triangulations in three dimensions
    Aronov, B
    Fortune, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (04) : 527 - 549
  • [45] Minimum-weight beams with shear strain energy
    Byoung Koo Lee
    Sang Jin Oh
    Tae Eun Lee
    Jung Su Park
    KSCE Journal of Civil Engineering, 2012, 16 : 145 - 154
  • [46] Combining Edge Weight and Vertex Weight for Minimum Vertex Cover Problem
    Fang, Zhiwen
    Chu, Yang
    Qiao, Kan
    Feng, Xu
    Xu, Ke
    FRONTIERS IN ALGORITHMICS, FAW 2014, 2014, 8497 : 71 - 81
  • [47] NONLINEAR MINIMUM-WEIGHT DESIGN OF PLANAR STRUCTURES
    VARGO, LG
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1956, 23 (10): : 956 - 960
  • [48] Minimum-weight beams with shear strain energy
    Lee, Byoung Koo
    Oh, Sang Jin
    Lee, Tae Eun
    Park, Jung Su
    KSCE JOURNAL OF CIVIL ENGINEERING, 2012, 16 (01) : 145 - 154
  • [49] Approximating Minimum-Weight Triangulations in Three Dimensions
    B. Aronov
    S. Fortune
    Discrete & Computational Geometry, 1999, 21 : 527 - 549
  • [50] Minimum-weight triangulation is NP-hard
    Mulzer, Wolfgang
    Rote, Guenter
    JOURNAL OF THE ACM, 2008, 55 (02)