Growth of HgTe Quantum Wells for IR to THz Detectors

被引:0
|
作者
S. Dvoretsky
N. Mikhailov
Yu. Sidorov
V. Shvets
S. Danilov
B. Wittman
S. Ganichev
机构
[1] A.V. Rzhanov Institute of Semiconductor Physics of SB RAS,Terahertz Center
[2] University of Regensburg,undefined
来源
关键词
Growth; HgTe; HgCdTe; quantum wells (QWs); ellipsometric parameters; MBE; far-infrared; mid-infrared; detector;
D O I
暂无
中图分类号
学科分类号
摘要
We zone-engineered HgCdTe/HgTe/HgCdTe quantum wells (QWs) using the molecular-beam epitaxy (MBE) method with in situ high-precision ellipsometric control of composition and thickness. The variations of ellipsometric parameters in the ψ–Δ plane were represented by smooth broken curves during HgTe QW growth with abrupt composition changes. The form of the spiral fragments and their extensions from fracture to fracture revealed the growing layer composition and its thickness. Single and multiple (up to 30) CdxHg1−xTe/HgTe/CdxHg1−xTe QWs with abrupt changes of composition were grown reproducibly on (013) GaAs substrates. HgTe thickness was in the range of 16 nm to 22 nm, with the central portion of CdxHg1−xTe spacers doped by In to a concentration of 1014 cm−3 to 1017 cm−3. Based on this research, high-quality (013)-grown HgTe QW structures can be used for all-electric detection of radiation ellipticity in a wide spectral range, from far-infrared (terahertz radiation) to mid-infrared wavelengths. Detection was demonstrated for various low-power continuous-wave (CW) lasers and high-power THz pulsed laser systems.
引用
收藏
页码:918 / 923
页数:5
相关论文
共 50 条
  • [21] Andreev spectroscopy of doped HgTe quantum wells
    Guigou, M.
    Cayssol, J.
    PHYSICAL REVIEW B, 2010, 82 (11):
  • [22] Plasmon recombination in narrowgap HgTe quantum wells
    Aleshkin, V. Ya
    Alymov, G.
    Dubinov, A. A.
    Gavrilenko, V., I
    Teppe, F.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2020, 4 (11): : 1 - 9
  • [23] Interface Studies in HgTe/HgCdTe Quantum Wells
    Mikhailov, Nikolay
    Shvets, Vasiliy
    Ikusov, Danil
    Uzhakov, Ivan
    Dvoretsky, Sergey
    Mynbaev, Karim
    Dluzewski, Piotr
    Morgiel, Jerzy
    Swiatek, Zbigniew
    Bonchyk, Olexander
    Izhnin, Ihor
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (05):
  • [24] Energy spectrum of semimetallic HgTe quantum wells
    Gospodaric, Jan
    Shuvaev, Alexey
    Mikhailov, Nikolai N.
    Kvon, Ze D.
    Novik, Elena G.
    Pimenov, Andrei
    PHYSICAL REVIEW B, 2021, 104 (11)
  • [25] Anomalous electron polarizability of HgTe quantum wells
    Aleshkin, V. Ya
    Germanenko, A., V
    Minkov, G. M.
    Sherstobitov, A. A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 128
  • [26] Mobility of Dirac electrons in HgTe quantum wells
    A. A. Dobretsova
    Z. D. Kvon
    L. S. Braginskii
    M. V. Entin
    N. N. Mikhailov
    JETP Letters, 2016, 104 : 388 - 391
  • [27] Magnetospectroscopy of double HgTe/CdHgTe quantum wells
    L. S. Bovkun
    S. S. Krishtopenko
    A. V. Ikonnikov
    V. Ya. Aleshkin
    A. M. Kadykov
    S. Ruffenach
    C. Consejo
    F. Teppe
    W. Knap
    M. Orlita
    B. Piot
    M. Potemski
    N. N. Mikhailov
    S. A. Dvoretskii
    V. I. Gavrilenko
    Semiconductors, 2016, 50 : 1532 - 1538
  • [28] Modulation-doped multiple CdTe quantum wells as THz detectors, filters and emitters
    Lusakowski, J.
    Yavorskiy, D.
    Karpierz, K.
    Fraczak, A.
    Grymuza, M.
    Imos, E.
    Siemaszko, A.
    Solarska, W.
    Zaremba, M.
    Zdunek, R.
    Adamus, Z.
    Slupinski, T.
    Wojtowicz, T.
    2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,
  • [29] Quantum Hall effect in HgTe quantum wells at nitrogen temperatures
    Kozlov, D. A.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretskii, S. A.
    Weishaeupl, S.
    Krupko, Y.
    Portal, J. -C.
    APPLIED PHYSICS LETTERS, 2014, 105 (13)
  • [30] Quantum Transport of Dirac Fermions in HgTe Gapless Quantum Wells
    Gusev, Gennady M.
    Levin, Alexander D.
    Kozlov, Dmitry A.
    Kvon, Ze D.
    Mikhailov, Nikolay N.
    NANOMATERIALS, 2022, 12 (12)