Synthesize of silicon/carbon nanosheets with NaCl template and its application as anode material of lithium-ion batteries

被引:0
|
作者
Qiliang Chen
Yi Nie
Yanxia Liu
Juntao Du
Baozeng Ren
机构
[1] Chinese Academy of Sciences,Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, CAS State Key Laboratory of Multiphase Complex Systems
[2] Zhengzhou Institute of Emerging Industrial Technology,School of Chemical Engineering and Energy
[3] Zhengzhou University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Lithium-ion batteries (LIBs) are used extensively in various applications such as mobile phones and portable computer. Silicon (Si) is regarded as a kind of promising anode material in LIBs because of its high theoretical capacity and low working potential. The major challenges related to Si anodes are their huge volume changes and poor conductivity during lithiation–delithiation. Herein, a two-dimensional structure of Si/petroleum pitches based carbon nanosheets (Si/CNSs) was successfully synthesized via a green and recyclable NaCl template method. This peculiar structural feature of Si/CNS can effectively accommodate the volume expansion of Si anodes and improve their electrochemical performance. A typical sample of Si/CNS-2 exhibits a high reversible capacities of 901 mAh g− 1 at 100 mA g− 1, good cycling stability (capacity retention of 655 mAh g− 1 after 100 cycles at 300 mA g− 1) and excellent rate capability (533 mAh g− 1 at 2 A g− 1). This approach is simple and environment-friendly, which may supply a practicality way to prepare Si-based anode materials for high-performance LIBs.
引用
收藏
页码:2442 / 2449
页数:7
相关论文
共 50 条
  • [21] A bio-inspired nanofibrous silicon/carbon composite as an anode material for lithium-ion batteries
    Jia, Dongling
    Huang, Jianguo
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (12) : 4887 - 4900
  • [22] Carbon-coated silicon/crumpled graphene composite as anode material for lithium-ion batteries
    Huang, Haiji
    Rao, Pinhua
    Choi, Won Mook
    CURRENT APPLIED PHYSICS, 2019, 19 (12) : 1349 - 1354
  • [23] Silicon monoxide with black titania and carbon coating layer as an anode material for lithium-ion batteries
    Park, Yang-kyu
    Lee, Jae-won
    APPLIED SURFACE SCIENCE, 2021, 554
  • [24] Amorphous Silicon-Coated Carbon Nanofibers Composite as Anode Material for Lithium-Ion Batteries
    Ghanbari, E.
    Saatchi, A. R.
    Raeissi, K.
    Saatchi, A.
    Tavanai, H.
    THERMEC 2011, PTS 1-4, 2012, 706-709 : 1029 - +
  • [25] Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries
    Shin, Min-Seon
    Choi, Cheon-Kyu
    Park, Min-Sik
    Lee, Sung-Man
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (01) : 159 - 166
  • [26] Silicon monoxide with black titania and carbon coating layer as an anode material for lithium-ion batteries
    Park, Yang-kyu
    Lee, Jae-won
    Applied Surface Science, 2021, 554
  • [27] Silicon nanotube anode for lithium-ion batteries
    Wen, Zhenhai
    Lu, Ganhua
    Mao, Shun
    Kim, Haejune
    Cui, Shumao
    Yu, Kehan
    Huang, Xingkang
    Hurley, Patrick T.
    Mao, Ou
    Chen, Junhong
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 29 : 67 - 70
  • [28] An anode material of CrN for lithium-ion batteries
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : A189 - A193
  • [29] Nanotubes as anode material for lithium-ion batteries
    Loutfy, RO
    Hossain, S
    Moravsky, A
    Saleh, M
    PERSPECTIVES OF FULLERENE NANOTECHNOLOGY, 2002, : 341 - 355
  • [30] A review of the carbon coating of the silicon anode in highperformance lithium-ion batteries
    Xu, Ze-yu
    Shao, Hai-bo
    Wang, Jian-ming
    NEW CARBON MATERIALS, 2024, 39 (05) : 896 - 917