Iteration of mapping classes and limits of hyperbolic 3-manifolds

被引:0
|
作者
Jeffrey F. Brock
机构
[1] Department of Mathematics,
[2] Stanford University,undefined
[3] Stanford,undefined
[4] CA 94305,undefined
[5] USA,undefined
来源
Inventiones mathematicae | 2001年 / 143卷
关键词
Mapping Class; Kleinian Group; Geometric Limit; Isotopy Class; Conformal Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
Let ϕ∈Mod(S) be an element of the mapping class group of a surface S. We classify algebraic and geometric limits of sequences {Q(ϕiX,Y)}i=1∞ of quasi-Fuchsian hyperbolic 3-manifolds ranging in a Bers slice. When ϕ has infinite order with finite-order restrictions, there is an essential subsurface Dϕ⊂S so that the geometric limits have homeomorphism type S×ℝ-Dϕ×{0}. Typically, ϕ has pseudo-Anosov restrictions, and Dϕ has components with negative Euler characteristic; these components correspond to new asymptotically periodic simply degenerate ends of the geometric limit. We show there is an s≥1 depending on ϕ and bounded in terms of S so that {Q(ϕsiX,Y)}i=1∞ converges algebraically and geometrically, and we give explicit quasi-isometric models for the limits.
引用
收藏
页码:523 / 570
页数:47
相关论文
共 50 条
  • [21] Isometric cusps in hyperbolic 3-manifolds
    Adams, CC
    MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (03) : 515 - 531
  • [22] Klein slopes on hyperbolic 3-manifolds
    Matignon, Daniel
    Sayari, Nabil
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 419 - 447
  • [23] Thick Surfaces in Hyperbolic 3-Manifolds
    Joseph D. Masters
    Geometriae Dedicata, 2006, 119 : 17 - 33
  • [24] Group Actions on Hyperbolic 3-manifolds
    王诗宬
    数学进展, 1991, (01) : 77 - 85
  • [25] Hyperbolic 3-Manifolds Boot Camp
    Adams, Colin
    MATHEMATICAL INTELLIGENCER, 2021, 43 (01): : 40 - 41
  • [26] Thick surfaces in hyperbolic 3-manifolds
    Masters, Joseph D.
    GEOMETRIAE DEDICATA, 2006, 119 (01) : 17 - 33
  • [27] Verified Computations for Hyperbolic 3-Manifolds
    Hoffman, Neil
    Ichihara, Kazuhiro
    Kashiwagi, Masahide
    Masai, Hidetoshi
    Oishi, Shin'ichi
    Takayasu, Akitoshi
    EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 66 - 78
  • [28] Norms on the cohomology of hyperbolic 3-manifolds
    Jeffrey F. Brock
    Nathan M. Dunfield
    Inventiones mathematicae, 2017, 210 : 531 - 558
  • [29] THE SPECTRUM OF DEGENERATING HYPERBOLIC 3-MANIFOLDS
    CHAVEL, I
    DODZIUK, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 39 (01) : 123 - 137
  • [30] TORI WITH HYPERBOLIC DYNAMICS IN 3-MANIFOLDS
    Rodriguez Hertz, Federico
    Rodriguez Hertz, Maria Alejandra
    Ures, Raul
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 185 - 202