Free surface motion of an incompressible ideal fluid

被引:0
|
作者
Masao Ogawa
机构
[1] Keio University,Department of Mathematics
[2] Tokyo University of Science,Department of Mathematics, Faculty of Science and Technology
来源
Mathematische Annalen | 2006年 / 335卷
关键词
35Q35; 35R35; 76B47;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the free boundary problem for an incompressible ideal fluid in the two-dimensional space. We show the unique existence of the solution, locally in time, even if the initial surface and the bottom are uneven.
引用
收藏
页码:47 / 77
页数:30
相关论文
共 50 条
  • [21] Singularities motion equations in 2-dimensional ideal hydrodynamics of incompressible fluid
    Yanovsky, V. V.
    Tur, A. V.
    Kulik, K. N.
    PHYSICS LETTERS A, 2009, 373 (29) : 2484 - 2487
  • [22] FINITE AND BOUNDARY ELEMENT INVESTIGATION OF THE EVOLUTION OF FREE SURFACES IN CONNECTION WITH THE UNSTEADY MOTION OF BODIES IN AN IDEAL INCOMPRESSIBLE FLUID.
    Afanas'ev, K.E.
    Afanas'eva, M.M.
    Terent'ev, A.G.
    Fluid Dynamics, 1986, 21 (05) : 683 - 688
  • [23] On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary
    Bieri, Lydia
    Miao, Shuang
    Shahshahani, Sohrab
    Wu, Sijue
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (01) : 161 - 243
  • [24] Waves on the Surface of an Ideal Incompressible Heavy Fluid under Wind Loads
    Zvyagin, A. V.
    Sapunov, K. V.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2018, 73 (03) : 67 - 72
  • [25] On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary
    Lydia Bieri
    Shuang Miao
    Sohrab Shahshahani
    Sijue Wu
    Communications in Mathematical Physics, 2017, 355 : 161 - 243
  • [26] Nonlinear dynamics of the free surface of an ideal fluid
    Dyachenko, AI
    Zakharov, VE
    Kuznetsov, EA
    PLASMA PHYSICS REPORTS, 1996, 22 (10) : 829 - 840
  • [27] Linear stability in an ideal incompressible fluid
    Latushkin, Y
    Vishik, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (03) : 439 - 461
  • [28] Linear Stability in an Ideal Incompressible Fluid
    Y. Latushkin
    M. Vishik
    Communications in Mathematical Physics, 2003, 233 : 439 - 461
  • [29] Simple waves on a shear free-boundary flow of an ideal incompressible fluid
    Teshukov V.M.
    Journal of Applied Mechanics and Technical Physics, 1997, 38 (2) : 211 - 218
  • [30] On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations
    Gu, Xumin
    Wang, Yanjin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 : 1 - 41