Diagram Groupoids and von Neumann Algebras

被引:0
|
作者
Ilwoo Cho
机构
[1] St. Ambrose University,Department of Mathematics
来源
关键词
Directed graphs; Graph groupoids; Reduced diagrams; Diagram groupoids; Diagram ; *-algebras; 05C20; 20L05; 47N99;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to study certain algebraic structures induced by directed graphs. We have studied graph groupoids, which are algebraic structures induced by given graphs. By defining a certain groupoid-homomorphism δ on the graph groupoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{G}}$$\end{document} of a given graph G, we define the diagram of G by the image \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta(\mathbb{G})}$$\end{document} of δ, equipped with the inherited binary operation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{G}}$$\end{document}. We study the fundamental properties of the diagram \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta(\mathbb{G})}$$\end{document}, and compare them with those of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{G}}$$\end{document}. Similar to Cho (Acta Appl Math 95:95–134, 2007), we construct the groupoid von Neumann algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_{G}=vN(\delta(\mathbb{G}))}$$\end{document}, generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta(\mathbb{G})}$$\end{document}, and consider the operator algebraic properties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_{G}}$$\end{document}. In particular, we show \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_{G}}$$\end{document} is *-isomorphic to a von Neumann algebra generated by a family of idempotent operators and nilpotent operators, under suitable representations.
引用
收藏
页码:843 / 895
页数:52
相关论文
共 50 条
  • [41] Products of projections in von Neumann algebras
    Oikhberg, Timur
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (04) : 759 - 775
  • [42] Commutator estimates in von Neumann algebras
    Ber, A. F.
    Sukochev, F. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2013, 47 (01) : 62 - 63
  • [43] APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS
    Li, Qihui
    Hadwin, Don
    Liu, Wenjing
    OPERATORS AND MATRICES, 2023, 17 (01): : 1 - 23
  • [44] Representations of von Neumann Algebras and Ultraproducts
    Haliullin, Samigulla
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) : 1010 - 1016
  • [45] STEERING PROJECTIONS IN VON NEUMANN ALGEBRAS
    Wegert, Adam
    OPUSCULA MATHEMATICA, 2015, 35 (02) : 251 - 271
  • [46] Hypercontractivity in group von Neumann algebras
    JUNGE, M. A. R. I. U. S.
    PALAZUELOS, C. A. R. L. O. S.
    PARCET, J. A. V. I. E. R.
    PERRIN, M. A. T. H. I. L. D. E.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 249 (1183) : VII - +
  • [47] Homology of group von Neumann algebras
    Mattox, Wade
    MUENSTER JOURNAL OF MATHEMATICS, 2016, 9 (01): : 77 - 91
  • [48] INEQUALITIES FOR TRACES ON VON NEUMANN ALGEBRAS
    RUSKAI, MB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 26 (04) : 280 - &
  • [49] Approximate equivalence in von Neumann algebras
    Huiru Ding
    Don Hadwin
    Science in China Series A: Mathematics, 2005, 48 : 239 - 247
  • [50] Infinite Measures on von Neumann Algebras
    Stanisław Goldstein
    Adam Paszkiewicz
    International Journal of Theoretical Physics, 2015, 54 : 4341 - 4348