共 50 条
Optimal Continuous Dependence Estimates for Fractional Degenerate Parabolic Equations
被引:0
|作者:
Nathaël Alibaud
Simone Cifani
Espen R. Jakobsen
机构:
[1] Université de Franche-Comté,UMR CNRS 6623
[2] Prince of Songkla University,Department of Mathematics and Statistics, Faculty of Science
[3] Norwegian University of Science and Technology (NTNU),Department of Mathematics
[4] Norwegian University of Science and Technology (NTNU),Department of Mathematics
来源:
关键词:
Continuous Dependence;
Entropy Solution;
Entropy Inequality;
Degenerate Parabolic Equation;
Weak Entropy Solution;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We derive continuous dependence estimates for weak entropy solutions of degenerate parabolic equations with nonlinear fractional diffusion. The diffusion term involves the fractional Laplace operator, ▵α/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\triangle^{\alpha/2}}$$\end{document} for α∈(0,2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\alpha \in (0,2)}$$\end{document}. Our results are quantitative and we exhibit an example for which they are optimal. We cover the dependence on the nonlinearities, and for the first time, the Lipschitz dependence on α in the BV-framework. The former estimate (dependence on nonlinearity) is robust in the sense that it is stable in the limits α↓0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\alpha \downarrow 0}$$\end{document} and α↑2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\alpha \uparrow 2}$$\end{document}. In the limit α↑2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\alpha \uparrow 2}$$\end{document}, ▵α/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\triangle^{\alpha/2}}$$\end{document} converges to the usual Laplacian, and we show rigorously that we recover the optimal continuous dependence result of Cockburn and Gripenberg (J Differ Equ 151(2):231–251, 1999) for local degenerate parabolic equations (thus providing an alternative proof).
引用
收藏
页码:705 / 762
页数:57
相关论文