Lifshitz Tails for Quantum Waveguides with Random Boundary Conditions

被引:0
|
作者
Hatem Najar
机构
[1] Faculté des Sciences de Monastir,Département de Mathématiques
[2] LAGTS,undefined
[3] Laboratoire Algèbre Géométrie et Théorie Spectrale,undefined
关键词
Spectral theory; Random operators; Integrated density of states; Lifshitz tails; Waveguide; 81Q10; 35P05; 37A30; 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we consider a quantum waveguide with random boundary conditions . Precisely we consider Laplace operator restricted to a two dimensional straight strip of width d. We consider Dirchilet boundary condition on y = 0, while on y = d we consider mixed, Dirchilet and Neumann boundary condition in a random way. We prove that the integrated density of states of the relevant operator exhibits Lifshitz behavior at the bottom of the spectrum.
引用
收藏
相关论文
共 50 条
  • [41] Lifshitz tails for alloy type random models in constant magnetic fields: a short review
    Klopp, Frederic
    SPECTRAL AND SCATTERING THEORY FOR QUANTUM MAGNETIC SYSTEMS, 2008, 500 : 153 - 157
  • [42] Thin waveguides with Robin boundary conditions
    Bouchitte, Guy
    Mascarenhas, Luisa
    Trabucho, Luis
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [43] Weak Disorder Localization and Lifshitz Tails
    Frédéric Klopp
    Communications in Mathematical Physics, 2002, 232 : 125 - 155
  • [44] Lifshitz tails for a percolation model in the continuum
    Kirsch, Werner
    Najar, Hatem
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (02) : 109 - 117
  • [45] The umpteen operator and its Lifshitz tails
    Feldheim, Ohad N.
    Sodin, Sasha
    arXiv, 2020,
  • [46] Weak disorder localization and Lifshitz tails
    Klopp, F
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 232 (01) : 125 - 155
  • [47] Absorbing boundary conditions for solid waveguides
    Sprenger, H.
    Raman, S. R.
    Gaul, L.
    MECHANICS RESEARCH COMMUNICATIONS, 2011, 38 (03) : 158 - 163
  • [48] Lifshitz Tails for the Fractional Anderson Model
    Martin Gebert
    Constanza Rojas-Molina
    Journal of Statistical Physics, 2020, 179 : 341 - 353
  • [49] Lifshitz Tails for the Fractional Anderson Model
    Gebert, Martin
    Rojas-Molina, Constanza
    JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (02) : 341 - 353
  • [50] Lifshitz tails in constant magnetic fields
    Klopp, Frederic
    Raikov, Georgi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (03) : 669 - 701