Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence

被引:0
|
作者
Weixin Wu
Zhidong Teng
机构
[1] Xinjiang University,College of Mathematics and Systems Science
来源
关键词
Nonlocal dispersal; SIR epidemic model; Nonlinear incidence; Minimal wave speed; Traveling wave solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a class of nonlocal dispersal SIR epidemic models with nonlinear incidence, we study the existence of traveling waves connecting the disease-free equilibrium with endemic equilibrium. We obtain that the existence of traveling waves depends on the minimal wave speed c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{*}$\end{document} and basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document}. That is, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and c>c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c> c^{*}$\end{document} then the model has a traveling wave connecting the disease-free equilibrium with endemic equilibrium. Otherwise, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and 0<c<c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< c< c^{*}$\end{document}, then there does not exist the traveling wave connecting the disease-free equilibrium with endemic equilibrium. The numerical simulations verify the theoretical results. Our results improve and generalize some known results.
引用
收藏
相关论文
共 50 条
  • [31] The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence
    Wu, Weixin
    Teng, Zhidong
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [32] Traveling Wave Solutions for a Delayed SIRS Infectious Disease Model with Nonlocal Diffusion and Nonlinear Incidence
    Tian, Xiaohong
    Xu, Rui
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [33] TRAVELING WAVE SOLUTIONS OF A NONLOCAL DELAYED SIR MODEL WITHOUT OUTBREAK THRESHOLD
    Li, Wan-Tong
    Lin, Guo
    Ma, Cong
    Yang, Fei-Ying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (02): : 467 - 484
  • [34] Traveling waves of a diffusive SIR epidemic model with general nonlinear incidence and infinitely distributed latency but without demography
    Hu, Haijun
    Zou, Xingfu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
  • [35] Wave propagation in a diffusive SEIR epidemic model with nonlocal transmission and a general nonlinear incidence rate
    Wu, Xin
    Ma, Zhaohai
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [36] Wave propagation in a diffusive SEIR epidemic model with nonlocal transmission and a general nonlinear incidence rate
    Xin Wu
    Zhaohai Ma
    Boundary Value Problems, 2021
  • [37] Traveling wave solutions of a nonlocal dispersal predator–prey model with spatiotemporal delay
    Zhihong Zhao
    Rui Li
    Xiangkui Zhao
    Zhaosheng Feng
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [38] Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal
    Dong, Fang-Di
    Li, Wan-Tong
    Zhang, Guo-Bao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 79
  • [39] Permanence of a delayed SIR epidemic model with general nonlinear incidence rate
    Jiang, Zhichao
    Ma, Wanbiao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (03) : 505 - 516
  • [40] A Delayed SIR Epidemic Model with Pulse Vaccination and General Nonlinear Incidence
    Ding, Yumin
    Gao, Shujing
    Lan, Yun
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 60 - 65