The impact of AlphaFold2 one year on

被引:0
|
作者
David T. Jones
Janet M. Thornton
机构
[1] University College London,Department of Computer Science and Department of Structural and Molecular Biology
[2] Wellcome Genome Campus,European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL
来源
Nature Methods | 2022年 / 19卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The greatly improved prediction of protein 3D structure from sequence achieved by the second version of AlphaFold in 2020 has already had a huge impact on biological research, but challenges remain; the protein folding problem cannot be considered solved. We expect fierce competition to improve the method even further and new applications of machine learning to help illuminate proteomes and their many interactions.
引用
收藏
页码:15 / 20
页数:5
相关论文
共 50 条
  • [41] Benchmarking reverse docking through AlphaFold2 human proteome
    Luo, Qing
    Wang, Sheng
    Li, Hoi Yeung
    Zheng, Liangzhen
    Mu, Yuguang
    Guo, Jingjing
    PROTEIN SCIENCE, 2024, 33 (10)
  • [42] NMR hawk-eyed view of AlphaFold2 structures
    Zweckstetter, Markus
    PROTEIN SCIENCE, 2021, 30 (11) : 2333 - 2337
  • [43] Sampling alternative conformational states of transporters and receptors with AlphaFold2
    del Alamo, Diego
    Sala, Davide
    Mchaourab, Hassane S.
    Meiler, Jens
    ELIFE, 2022, 11
  • [44] AFsample2 predicts multiple conformations and ensembles with AlphaFold2
    Kalakoti, Yogesh
    Wallner, Bjorn
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [45] Modeling Flexible Protein Structure With AlphaFold2 and Crosslinking Mass
    Manalastas-Cantos, Karen
    Adoni, Kish R.
    Pfeifer, Matthias
    Martend, Birgit
    Gruenewald, Kay
    Thalassinos, Konstantinos
    Topf, Maya
    MOLECULAR & CELLULAR PROTEOMICS, 2024, 23 (03)
  • [46] Predicting multiple conformations via sequence clustering and AlphaFold2
    Wayment-Steele, Hannah K.
    Ojoawo, Adedolapo
    Otten, Renee
    Apitz, Julia M.
    Pitsawong, Warintra
    Homberger, Marc
    Ovchinnikov, Sergey
    Colwell, Lucy
    Kern, Dorothee
    NATURE, 2024, 625 (7996) : 832 - 839
  • [47] AlphaFold2 Can Predict Single-Mutation Effects
    McBride, John M.
    Polev, Konstantin
    Abdirasulov, Amirbek
    Reinharz, Vladimir
    Grzybowski, Bartosz A.
    Tlusty, Tsvi
    PHYSICAL REVIEW LETTERS, 2023, 131 (21)
  • [48] Highly significant improvement of protein sequence alignments with AlphaFold2
    Baltzis, Athanasios
    Mansouri, Leila
    Jin, Suzanne
    Langer, Bjorn E.
    Erb, Ionas
    Notredame, Cedric
    Martelli, Pier Luigi
    BIOINFORMATICS, 2022, 38 (22) : 5007 - 5011
  • [49] OpenFold provides insights into AlphaFold2's learning behavior
    Marchal, Iris
    NATURE BIOTECHNOLOGY, 2024, 42 (06) : 847 - 847
  • [50] Using AlphaFold2 to explore the functions of fungal unspecific peroxygenases
    Zhang, Xiyang
    Zheng, Yu
    Chen, Yan
    Zhang, Jie
    Huang, Yawen
    Zhang, Wuyuan
    MOLECULAR CATALYSIS, 2025, 573