Conics and caps

被引:3
|
作者
Barwick S.G. [1 ]
Jackson W.-A. [1 ]
Quinn C.T. [1 ]
机构
[1] School of Mathematical Sciences, University of Adelaide
关键词
Partial Derivative; Singular Point; Curve Versus; Primitive Element; Conic Versus;
D O I
10.1007/s00022-011-0077-z
中图分类号
学科分类号
摘要
In this article, we begin with arcs in PG(2, qn) and show that they correspond to caps in PG(2n, q) via the André/Bruck-Bose representation of PG(2, qn) in PG(2n, q). In particular, we show that a conic of PG(2, qn) that meets ℓ∞ in x points corresponds to a (qn + 1 - x)-cap in PG(2n, q). If x = 0, this cap is the intersection of n quadrics. If x = 1 or 2, this cap is contained in the intersection of n quadrics and we discuss ways of extending these caps. We also investigate the structure of the n quadrics. © 2011 Springer Basel AG.
引用
收藏
页码:15 / 28
页数:13
相关论文
共 50 条
  • [11] CONCURRENT CONICS
    不详
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (10): : 939 - 939
  • [12] Tangent conics at quartic surfaces and conics in quartic double solids
    Hadan, I
    MATHEMATISCHE NACHRICHTEN, 2000, 210 : 127 - 162
  • [13] Conjugated of Conics
    Gaston Casanova
    Advances in Applied Clifford Algebras, 2008, 18 : 143 - 146
  • [14] TRAJECTORIES AND CONICS
    KASNER, E
    DECICCO, J
    SCIENCE, 1948, 107 (2784) : 465 - 465
  • [15] Funicularity of conics
    Xavier Tellier
    Cyril Douthe
    Laurent Hauswirth
    Olivier Baverel
    Acta Mechanica, 2021, 232 : 3179 - 3191
  • [16] A complex of conics
    de Vries, J
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1927, 30 (1/5): : 268 - 271
  • [17] Hooked on Conics
    Schoonmaker, David
    AMERICAN SCIENTIST, 2012, 100 (06) : 434 - 434
  • [18] CONICS ON KUMMER QUARTICS
    Degtyarev, Alex
    TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (03) : 395 - 421
  • [19] OPTICAL PROPERTY OF CONICS
    FLANDERS, H
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 399 - &
  • [20] The conics of Lucas' configuration
    Herrera Gomez, Blas
    ELEMENTE DER MATHEMATIK, 2008, 63 (01) : 14 - 17