Conics and caps

被引:3
|
作者
Barwick S.G. [1 ]
Jackson W.-A. [1 ]
Quinn C.T. [1 ]
机构
[1] School of Mathematical Sciences, University of Adelaide
关键词
Partial Derivative; Singular Point; Curve Versus; Primitive Element; Conic Versus;
D O I
10.1007/s00022-011-0077-z
中图分类号
学科分类号
摘要
In this article, we begin with arcs in PG(2, qn) and show that they correspond to caps in PG(2n, q) via the André/Bruck-Bose representation of PG(2, qn) in PG(2n, q). In particular, we show that a conic of PG(2, qn) that meets ℓ∞ in x points corresponds to a (qn + 1 - x)-cap in PG(2n, q). If x = 0, this cap is the intersection of n quadrics. If x = 1 or 2, this cap is contained in the intersection of n quadrics and we discuss ways of extending these caps. We also investigate the structure of the n quadrics. © 2011 Springer Basel AG.
引用
收藏
页码:15 / 28
页数:13
相关论文
共 50 条
  • [1] Liquids with conics
    Kleman, M.
    Lavrentovich, O. D.
    LIQUID CRYSTALS, 2009, 36 (10-11) : 1085 - 1099
  • [2] Conjugated of conics
    Casanova, Gaston
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (02) : 143 - 146
  • [3] Conics and convexity
    McLean, K. Robin
    MATHEMATICAL GAZETTE, 2014, 98 (542): : 266 - 272
  • [4] Hooked on Conics
    Schoonmaker, David
    AMERICAN SCIENTIST, 2012, 100 (05) : 354 - 354
  • [5] A congruence of conics
    de Vries, J
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1920, 22 (6/10): : 641 - 644
  • [6] NETS OF CONICS
    WALL, CTC
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 81 (MAY) : 351 - 364
  • [7] CONCURRENT CONICS
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (10): : 957 - 957
  • [8] Funicularity of conics
    Tellier, Xavier
    Douthe, Cyril
    Hauswirth, Laurent
    Baverel, Olivier
    ACTA MECHANICA, 2021, 232 (08) : 3179 - 3191
  • [9] PROPERTY OF CONICS
    DOU, J
    DEMIR, H
    KUIPERS, L
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (02): : 121 - 121
  • [10] Yff Conics
    Kimberling, Clark
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2008, 12 (01): : 23 - 34