Privacy preserving using joint 2 K-means clustering and coati optimization algorithm for online social networks

被引:0
|
作者
Gowda N.R. [1 ]
Venkatesh [2 ]
Venugopal K.R. [3 ]
机构
[1] Department of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bengaluru
[2] Department Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bengaluru
[3] University Visvesvaraya College of Engineering, Bangalore University, Bangalore
关键词
Anonymization; Clusters; COA; Cost function; K-anonymity; K-means clustering; L-diversity; T-closeness;
D O I
10.1007/s41870-024-01729-w
中图分类号
学科分类号
摘要
Social networks, that have grown so prevalent nowadays, enable users to exchange information and save a significant amount of personal data about them. Although the information that is stored can be useful for enhancing the quality of services provided to users, it also poses a risk to their privacy. This is because social networks contain private information about users. As a result, members of social networks seek to protect the confidentiality of their shared data. The most popular method for protecting confidentiality is anonymizing data, which involves modifying or eliminating some information while trying to preserve as much of the original data as possible. The high level of data loss, similarities attacks, and protection from attribute or link disclosure is problem with existing anonymity approaches. The study proposes a hybrid approach based on K-member k-means clustering and coati optimization algorithm (2KMCOA) as a successful solution for balanced clustering and anonymizing in social networks in order to get over these shortcomings. A K-member K-means clustering algorithm is used to divide the different users into C clusters and each cluster has at least K users, as part of the proposed anonymization procedure. Following clustering, an initial solution is generated that produces the modified data table which should satisfy objective functions and three constraints. The coati optimization algorithm (COA) is then utilized to optimize the primary clusters even more to anonymize the data as well as network graph. The efficiency of the proposed 2KMCOA is compared with other existing anonymity techniques K-means clustering with COA (KMCOA) and K- member K-means clustering without COA (2K) in terms of clustering error, balancing error, distortion rate, objective function, cost function and CPU running time. © The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2024.
引用
收藏
页码:2715 / 2724
页数:9
相关论文
共 50 条
  • [41] Optimization of K-means clustering method using hybrid capuchin search algorithm
    Qtaish, Amjad
    Braik, Malik
    Albashish, Dheeb
    Alshammari, Mohammad T. T.
    Alreshidi, Abdulrahman
    Alreshidi, Eissa Jaber
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 1728 - 1787
  • [42] Microarray data clustering using particle swarm optimization K-means algorithm
    Deng, YP
    Kayarat, D
    Elasri, MO
    Brown, SJ
    PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, : 1730 - 1734
  • [43] K-Means Clustering Algorithm Optimized by Particle Swarm Optimization Algorithm
    Chai, Yi
    Ma, Hao
    Zhang, Ke
    Qian, Kun
    INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND AUTOMATION (ICCEA 2014), 2014, : 852 - 857
  • [44] Privacy Preserving Distributed K-Means Clustering in Malicious Model Using Verifiable Secret Sharing Scheme
    Patel, Sankita
    Sonar, Mitali
    Jinwala, Devesh C.
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2014, 5 (02) : 44 - 70
  • [45] Optimization of K-means Clustering Algorithm Based on Hadoop Platform
    Duan, A. L.
    Xu, Z. X.
    Zhang, H. J.
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 1195 - 1203
  • [46] Hybridization of the ant colony optimization with the K-means algorithm for clustering
    Saatchi, S
    Hung, CC
    IMAGE ANALYSIS, PROCEEDINGS, 2005, 3540 : 511 - 520
  • [47] A Distributed K-means Clustering Algorithm in Wireless Sensor Networks
    Zhou, Jin
    Zhang, Yuan
    Jiang, Yuyan
    Chen, C. L. Philip
    Chen, Long
    2015 INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2015, : 26 - 30
  • [48] Implementation of hadoop optimization K-means parallel clustering algorithm
    Huang, Suyu
    Tan, Lingli
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 160 - 160
  • [49] On the Efficiency of K-Means Clustering: Evaluation, Optimization, and Algorithm Selection
    Wang, Sheng
    Sun, Yuan
    Bao, Zhifeng
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (02): : 163 - 175
  • [50] A hyperbolic fuzzy k-means clustering and algorithm for neural networks
    Watanabe, N
    Imaizumi, T
    Kikuchi, T
    DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 77 - 82